Integrale di $$$e^{- \frac{x^{2}}{2 \sigma^{2}}}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$e^{- \frac{x^{2}}{2 \sigma^{2}}}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int e^{- \frac{x^{2}}{2 \sigma^{2}}}\, dx$$$.

Soluzione

Sia $$$u=\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}$$$.

Quindi $$$du=\left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}\right)^{\prime }dx = \frac{\sqrt{2}}{2 \left|{\sigma}\right|} dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \sqrt{2} \left|{\sigma}\right| du$$$.

Quindi,

$${\color{red}{\int{e^{- \frac{x^{2}}{2 \sigma^{2}}} d x}}} = {\color{red}{\int{\sqrt{2} e^{- u^{2}} \left|{\sigma}\right| d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\sqrt{2} \left|{\sigma}\right|$$$ e $$$f{\left(u \right)} = e^{- u^{2}}$$$:

$${\color{red}{\int{\sqrt{2} e^{- u^{2}} \left|{\sigma}\right| d u}}} = {\color{red}{\sqrt{2} \left|{\sigma}\right| \int{e^{- u^{2}} d u}}}$$

Questo integrale (Funzione di errore) non ha una forma chiusa:

$$\sqrt{2} \left|{\sigma}\right| {\color{red}{\int{e^{- u^{2}} d u}}} = \sqrt{2} \left|{\sigma}\right| {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}$$

Ricordiamo che $$$u=\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}$$$:

$$\frac{\sqrt{2} \sqrt{\pi} \left|{\sigma}\right| \operatorname{erf}{\left({\color{red}{u}} \right)}}{2} = \frac{\sqrt{2} \sqrt{\pi} \left|{\sigma}\right| \operatorname{erf}{\left({\color{red}{\left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}\right)}} \right)}}{2}$$

Pertanto,

$$\int{e^{- \frac{x^{2}}{2 \sigma^{2}}} d x} = \frac{\sqrt{2} \sqrt{\pi} \left|{\sigma}\right| \operatorname{erf}{\left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|} \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{e^{- \frac{x^{2}}{2 \sigma^{2}}} d x} = \frac{\sqrt{2} \sqrt{\pi} \left|{\sigma}\right| \operatorname{erf}{\left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|} \right)}}{2}+C$$

Risposta

$$$\int e^{- \frac{x^{2}}{2 \sigma^{2}}}\, dx = \frac{\sqrt{2} \sqrt{\pi} \left|{\sigma}\right| \operatorname{erf}{\left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|} \right)}}{2} + C$$$A


Please try a new game Rotatly