Integral de $$$220 e^{\frac{x}{10}}$$$

La calculadora encontrará la integral/antiderivada de $$$220 e^{\frac{x}{10}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int 220 e^{\frac{x}{10}}\, dx$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=220$$$ y $$$f{\left(x \right)} = e^{\frac{x}{10}}$$$:

$${\color{red}{\int{220 e^{\frac{x}{10}} d x}}} = {\color{red}{\left(220 \int{e^{\frac{x}{10}} d x}\right)}}$$

Sea $$$u=\frac{x}{10}$$$.

Entonces $$$du=\left(\frac{x}{10}\right)^{\prime }dx = \frac{dx}{10}$$$ (los pasos pueden verse »), y obtenemos que $$$dx = 10 du$$$.

Entonces,

$$220 {\color{red}{\int{e^{\frac{x}{10}} d x}}} = 220 {\color{red}{\int{10 e^{u} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=10$$$ y $$$f{\left(u \right)} = e^{u}$$$:

$$220 {\color{red}{\int{10 e^{u} d u}}} = 220 {\color{red}{\left(10 \int{e^{u} d u}\right)}}$$

La integral de la función exponencial es $$$\int{e^{u} d u} = e^{u}$$$:

$$2200 {\color{red}{\int{e^{u} d u}}} = 2200 {\color{red}{e^{u}}}$$

Recordemos que $$$u=\frac{x}{10}$$$:

$$2200 e^{{\color{red}{u}}} = 2200 e^{{\color{red}{\left(\frac{x}{10}\right)}}}$$

Por lo tanto,

$$\int{220 e^{\frac{x}{10}} d x} = 2200 e^{\frac{x}{10}}$$

Añade la constante de integración:

$$\int{220 e^{\frac{x}{10}} d x} = 2200 e^{\frac{x}{10}}+C$$

Respuesta

$$$\int 220 e^{\frac{x}{10}}\, dx = 2200 e^{\frac{x}{10}} + C$$$A


Please try a new game Rotatly