Integral of $$$220 e^{\frac{x}{10}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 220 e^{\frac{x}{10}}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=220$$$ and $$$f{\left(x \right)} = e^{\frac{x}{10}}$$$:
$${\color{red}{\int{220 e^{\frac{x}{10}} d x}}} = {\color{red}{\left(220 \int{e^{\frac{x}{10}} d x}\right)}}$$
Let $$$u=\frac{x}{10}$$$.
Then $$$du=\left(\frac{x}{10}\right)^{\prime }dx = \frac{dx}{10}$$$ (steps can be seen »), and we have that $$$dx = 10 du$$$.
Thus,
$$220 {\color{red}{\int{e^{\frac{x}{10}} d x}}} = 220 {\color{red}{\int{10 e^{u} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=10$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$$220 {\color{red}{\int{10 e^{u} d u}}} = 220 {\color{red}{\left(10 \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$2200 {\color{red}{\int{e^{u} d u}}} = 2200 {\color{red}{e^{u}}}$$
Recall that $$$u=\frac{x}{10}$$$:
$$2200 e^{{\color{red}{u}}} = 2200 e^{{\color{red}{\left(\frac{x}{10}\right)}}}$$
Therefore,
$$\int{220 e^{\frac{x}{10}} d x} = 2200 e^{\frac{x}{10}}$$
Add the constant of integration:
$$\int{220 e^{\frac{x}{10}} d x} = 2200 e^{\frac{x}{10}}+C$$
Answer
$$$\int 220 e^{\frac{x}{10}}\, dx = 2200 e^{\frac{x}{10}} + C$$$A