Μοναδιαίο διάνυσμα κατά τη διεύθυνση του $$$\left\langle \frac{1}{5}, - \frac{3}{5}, - \frac{1}{5}, \frac{2}{5}\right\rangle$$$
Η είσοδός σας
Βρείτε το μοναδιαίο διάνυσμα στη διεύθυνση του $$$\mathbf{\vec{u}} = \left\langle \frac{1}{5}, - \frac{3}{5}, - \frac{1}{5}, \frac{2}{5}\right\rangle$$$.
Λύση
Το μέτρο του διανύσματος είναι $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \frac{\sqrt{15}}{5}$$$ (για τα βήματα, δείτε υπολογιστής μέτρου διανύσματος).
Το μοναδιαίο διάνυσμα προκύπτει διαιρώντας κάθε συνιστώσα του δοθέντος διανύσματος με το μέτρο του.
Επομένως, το μοναδιαίο διάνυσμα είναι $$$\mathbf{\vec{e}} = \left\langle \frac{\sqrt{15}}{15}, - \frac{\sqrt{15}}{5}, - \frac{\sqrt{15}}{15}, \frac{2 \sqrt{15}}{15}\right\rangle$$$ (για τα βήματα, δείτε υπολογιστής βαθμωτού πολλαπλασιασμού διανύσματος).
Απάντηση
Το μοναδιαίο διάνυσμα στη διεύθυνση του $$$\left\langle \frac{1}{5}, - \frac{3}{5}, - \frac{1}{5}, \frac{2}{5}\right\rangle$$$A είναι $$$\left\langle \frac{\sqrt{15}}{15}, - \frac{\sqrt{15}}{5}, - \frac{\sqrt{15}}{15}, \frac{2 \sqrt{15}}{15}\right\rangle\approx \left\langle 0.258198889747161, -0.774596669241483, -0.258198889747161, 0.516397779494322\right\rangle.$$$A