Unit vector in the direction of $$$\left\langle \frac{1}{5}, - \frac{3}{5}, - \frac{1}{5}, \frac{2}{5}\right\rangle$$$

The calculator will find the unit vector in the direction of the vector $$$\left\langle \frac{1}{5}, - \frac{3}{5}, - \frac{1}{5}, \frac{2}{5}\right\rangle$$$, with steps shown.
$$$\langle$$$ $$$\rangle$$$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the unit vector in the direction of $$$\mathbf{\vec{u}} = \left\langle \frac{1}{5}, - \frac{3}{5}, - \frac{1}{5}, \frac{2}{5}\right\rangle$$$.

Solution

The magnitude of the vector is $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \frac{\sqrt{15}}{5}$$$ (for steps, see magnitude calculator).

The unit vector is obtained by dividing each coordinate of the given vector by the magnitude.

Thus, the unit vector is $$$\mathbf{\vec{e}} = \left\langle \frac{\sqrt{15}}{15}, - \frac{\sqrt{15}}{5}, - \frac{\sqrt{15}}{15}, \frac{2 \sqrt{15}}{15}\right\rangle$$$ (for steps, see vector scalar multiplication calculator).

Answer

The unit vector in the direction of $$$\left\langle \frac{1}{5}, - \frac{3}{5}, - \frac{1}{5}, \frac{2}{5}\right\rangle$$$A is $$$\left\langle \frac{\sqrt{15}}{15}, - \frac{\sqrt{15}}{5}, - \frac{\sqrt{15}}{15}, \frac{2 \sqrt{15}}{15}\right\rangle\approx \left\langle 0.258198889747161, -0.774596669241483, -0.258198889747161, 0.516397779494322\right\rangle.$$$A


Please try a new game Rotatly