Ιδιοτιμές και ιδιοδιανύσματα του $$$\left[\begin{array}{cc}2 & 1\\1 & 1\end{array}\right]$$$
Σχετικός υπολογιστής: Υπολογιστής χαρακτηριστικού πολυωνύμου
Η είσοδός σας
Βρείτε τις ιδιοτιμές και τα ιδιοδιανύσματα του $$$\left[\begin{array}{cc}2 & 1\\1 & 1\end{array}\right]$$$.
Λύση
Ξεκινήστε με τον σχηματισμό ενός νέου πίνακα αφαιρώντας $$$\lambda$$$ από τα διαγώνια στοιχεία του δοθέντος πίνακα: $$$\left[\begin{array}{cc}2 - \lambda & 1\\1 & 1 - \lambda\end{array}\right]$$$.
Η ορίζουσα της προκύπτουσας μήτρας είναι $$$\lambda^{2} - 3 \lambda + 1$$$ (για τα βήματα, δείτε determinant calculator).
Λύστε την εξίσωση $$$\lambda^{2} - 3 \lambda + 1 = 0$$$.
Οι ρίζες είναι $$$\lambda_{1} = - \frac{-3 + \sqrt{5}}{2}$$$, $$$\lambda_{2} = \frac{\sqrt{5} + 3}{2}$$$ (για τα βήματα, δείτε επίλυση εξισώσεων).
Αυτές είναι οι ιδιοτιμές.
Στη συνέχεια, βρείτε τα ιδιοδιανύσματα.
$$$\lambda = - \frac{-3 + \sqrt{5}}{2}$$$
$$$\left[\begin{array}{cc}2 - \lambda & 1\\1 & 1 - \lambda\end{array}\right] = \left[\begin{array}{cc}\frac{-3 + \sqrt{5}}{2} + 2 & 1\\1 & \frac{-3 + \sqrt{5}}{2} + 1\end{array}\right]$$$
Ο μηδενικός χώρος αυτού του πίνακα είναι $$$\left\{\left[\begin{array}{c}- \frac{-1 + \sqrt{5}}{2}\\1\end{array}\right]\right\}$$$ (για τα βήματα, δείτε υπολογιστής μηδενικού χώρου).
Αυτό είναι το ιδιοδιάνυσμα.
$$$\lambda = \frac{\sqrt{5} + 3}{2}$$$
$$$\left[\begin{array}{cc}2 - \lambda & 1\\1 & 1 - \lambda\end{array}\right] = \left[\begin{array}{cc}2 - \frac{\sqrt{5} + 3}{2} & 1\\1 & 1 - \frac{\sqrt{5} + 3}{2}\end{array}\right]$$$
Ο μηδενικός χώρος αυτού του πίνακα είναι $$$\left\{\left[\begin{array}{c}\frac{1 + \sqrt{5}}{2}\\1\end{array}\right]\right\}$$$ (για τα βήματα, δείτε υπολογιστής μηδενικού χώρου).
Αυτό είναι το ιδιοδιάνυσμα.
Απάντηση
Ιδιοτιμή: $$$- \frac{-3 + \sqrt{5}}{2}\approx 0.381966011250105$$$A, πολλαπλότητα: $$$1$$$A, ιδιοδιάνυσμα: $$$\left[\begin{array}{c}- \frac{-1 + \sqrt{5}}{2}\\1\end{array}\right]\approx \left[\begin{array}{c}-0.618033988749895\\1\end{array}\right]$$$A.
Ιδιοτιμή: $$$\frac{\sqrt{5} + 3}{2}\approx 2.618033988749895$$$A, πολλαπλότητα: $$$1$$$A, ιδιοδιάνυσμα: $$$\left[\begin{array}{c}\frac{1 + \sqrt{5}}{2}\\1\end{array}\right]\approx \left[\begin{array}{c}1.618033988749895\\1\end{array}\right]$$$A.