Eigenvalues and eigenvectors of $$$\left[\begin{array}{cc}2 & 1\\1 & 1\end{array}\right]$$$
Related calculator: Characteristic Polynomial Calculator
Your Input
Find the eigenvalues and eigenvectors of $$$\left[\begin{array}{cc}2 & 1\\1 & 1\end{array}\right]$$$.
Solution
Start from forming a new matrix by subtracting $$$\lambda$$$ from the diagonal entries of the given matrix: $$$\left[\begin{array}{cc}2 - \lambda & 1\\1 & 1 - \lambda\end{array}\right]$$$.
The determinant of the obtained matrix is $$$\lambda^{2} - 3 \lambda + 1$$$ (for steps, see determinant calculator).
Solve the equation $$$\lambda^{2} - 3 \lambda + 1 = 0$$$.
The roots are $$$\lambda_{1} = - \frac{-3 + \sqrt{5}}{2}$$$, $$$\lambda_{2} = \frac{\sqrt{5} + 3}{2}$$$ (for steps, see equation solver).
These are the eigenvalues.
Next, find the eigenvectors.
$$$\lambda = - \frac{-3 + \sqrt{5}}{2}$$$
$$$\left[\begin{array}{cc}2 - \lambda & 1\\1 & 1 - \lambda\end{array}\right] = \left[\begin{array}{cc}\frac{-3 + \sqrt{5}}{2} + 2 & 1\\1 & \frac{-3 + \sqrt{5}}{2} + 1\end{array}\right]$$$
The null space of this matrix is $$$\left\{\left[\begin{array}{c}- \frac{-1 + \sqrt{5}}{2}\\1\end{array}\right]\right\}$$$ (for steps, see null space calculator).
This is the eigenvector.
$$$\lambda = \frac{\sqrt{5} + 3}{2}$$$
$$$\left[\begin{array}{cc}2 - \lambda & 1\\1 & 1 - \lambda\end{array}\right] = \left[\begin{array}{cc}2 - \frac{\sqrt{5} + 3}{2} & 1\\1 & 1 - \frac{\sqrt{5} + 3}{2}\end{array}\right]$$$
The null space of this matrix is $$$\left\{\left[\begin{array}{c}\frac{1 + \sqrt{5}}{2}\\1\end{array}\right]\right\}$$$ (for steps, see null space calculator).
This is the eigenvector.
Answer
Eigenvalue: $$$- \frac{-3 + \sqrt{5}}{2}\approx 0.381966011250105$$$A, multiplicity: $$$1$$$A, eigenvector: $$$\left[\begin{array}{c}- \frac{-1 + \sqrt{5}}{2}\\1\end{array}\right]\approx \left[\begin{array}{c}-0.618033988749895\\1\end{array}\right]$$$A.
Eigenvalue: $$$\frac{\sqrt{5} + 3}{2}\approx 2.618033988749895$$$A, multiplicity: $$$1$$$A, eigenvector: $$$\left[\begin{array}{c}\frac{1 + \sqrt{5}}{2}\\1\end{array}\right]\approx \left[\begin{array}{c}1.618033988749895\\1\end{array}\right]$$$A.