Ολοκλήρωμα του $$$e^{\frac{x}{3}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$e^{\frac{x}{3}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int e^{\frac{x}{3}}\, dx$$$.

Λύση

Έστω $$$u=\frac{x}{3}$$$.

Τότε $$$du=\left(\frac{x}{3}\right)^{\prime }dx = \frac{dx}{3}$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = 3 du$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$${\color{red}{\int{e^{\frac{x}{3}} d x}}} = {\color{red}{\int{3 e^{u} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=3$$$ και $$$f{\left(u \right)} = e^{u}$$$:

$${\color{red}{\int{3 e^{u} d u}}} = {\color{red}{\left(3 \int{e^{u} d u}\right)}}$$

Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:

$$3 {\color{red}{\int{e^{u} d u}}} = 3 {\color{red}{e^{u}}}$$

Θυμηθείτε ότι $$$u=\frac{x}{3}$$$:

$$3 e^{{\color{red}{u}}} = 3 e^{{\color{red}{\left(\frac{x}{3}\right)}}}$$

Επομένως,

$$\int{e^{\frac{x}{3}} d x} = 3 e^{\frac{x}{3}}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{e^{\frac{x}{3}} d x} = 3 e^{\frac{x}{3}}+C$$

Απάντηση

$$$\int e^{\frac{x}{3}}\, dx = 3 e^{\frac{x}{3}} + C$$$A


Please try a new game Rotatly