Ολοκλήρωμα της $$$e^{\frac{2 y}{x}}$$$ ως προς $$$y$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$e^{\frac{2 y}{x}}$$$ ως προς $$$y$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int e^{\frac{2 y}{x}}\, dy$$$.

Λύση

Έστω $$$u=\frac{2 y}{x}$$$.

Τότε $$$du=\left(\frac{2 y}{x}\right)^{\prime }dy = \frac{2}{x} dy$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dy = \frac{x du}{2}$$$.

Επομένως,

$${\color{red}{\int{e^{\frac{2 y}{x}} d y}}} = {\color{red}{\int{\frac{x e^{u}}{2} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{x}{2}$$$ και $$$f{\left(u \right)} = e^{u}$$$:

$${\color{red}{\int{\frac{x e^{u}}{2} d u}}} = {\color{red}{\left(\frac{x \int{e^{u} d u}}{2}\right)}}$$

Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:

$$\frac{x {\color{red}{\int{e^{u} d u}}}}{2} = \frac{x {\color{red}{e^{u}}}}{2}$$

Θυμηθείτε ότι $$$u=\frac{2 y}{x}$$$:

$$\frac{x e^{{\color{red}{u}}}}{2} = \frac{x e^{{\color{red}{\left(\frac{2 y}{x}\right)}}}}{2}$$

Επομένως,

$$\int{e^{\frac{2 y}{x}} d y} = \frac{x e^{\frac{2 y}{x}}}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{e^{\frac{2 y}{x}} d y} = \frac{x e^{\frac{2 y}{x}}}{2}+C$$

Απάντηση

$$$\int e^{\frac{2 y}{x}}\, dy = \frac{x e^{\frac{2 y}{x}}}{2} + C$$$A


Please try a new game Rotatly