Integral of $$$e^{\frac{2 y}{x}}$$$ with respect to $$$y$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{\frac{2 y}{x}}\, dy$$$.
Solution
Let $$$u=\frac{2 y}{x}$$$.
Then $$$du=\left(\frac{2 y}{x}\right)^{\prime }dy = \frac{2}{x} dy$$$ (steps can be seen »), and we have that $$$dy = \frac{x du}{2}$$$.
So,
$${\color{red}{\int{e^{\frac{2 y}{x}} d y}}} = {\color{red}{\int{\frac{x e^{u}}{2} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{x}{2}$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\frac{x e^{u}}{2} d u}}} = {\color{red}{\left(\frac{x \int{e^{u} d u}}{2}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{x {\color{red}{\int{e^{u} d u}}}}{2} = \frac{x {\color{red}{e^{u}}}}{2}$$
Recall that $$$u=\frac{2 y}{x}$$$:
$$\frac{x e^{{\color{red}{u}}}}{2} = \frac{x e^{{\color{red}{\left(\frac{2 y}{x}\right)}}}}{2}$$
Therefore,
$$\int{e^{\frac{2 y}{x}} d y} = \frac{x e^{\frac{2 y}{x}}}{2}$$
Add the constant of integration:
$$\int{e^{\frac{2 y}{x}} d y} = \frac{x e^{\frac{2 y}{x}}}{2}+C$$
Answer
$$$\int e^{\frac{2 y}{x}}\, dy = \frac{x e^{\frac{2 y}{x}}}{2} + C$$$A