Integral von $$$\frac{\sin{\left(x \right)}}{23}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\sin{\left(x \right)}}{23}\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{23}$$$ und $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ an:
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{23} d x}}} = {\color{red}{\left(\frac{\int{\sin{\left(x \right)} d x}}{23}\right)}}$$
Das Integral des Sinus lautet $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{23} = \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{23}$$
Daher,
$$\int{\frac{\sin{\left(x \right)}}{23} d x} = - \frac{\cos{\left(x \right)}}{23}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\sin{\left(x \right)}}{23} d x} = - \frac{\cos{\left(x \right)}}{23}+C$$
Antwort
$$$\int \frac{\sin{\left(x \right)}}{23}\, dx = - \frac{\cos{\left(x \right)}}{23} + C$$$A