Integrale di $$$\frac{\sin{\left(x \right)}}{23}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{\sin{\left(x \right)}}{23}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{23}$$$ e $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{23} d x}}} = {\color{red}{\left(\frac{\int{\sin{\left(x \right)} d x}}{23}\right)}}$$
L'integrale del seno è $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{23} = \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{23}$$
Pertanto,
$$\int{\frac{\sin{\left(x \right)}}{23} d x} = - \frac{\cos{\left(x \right)}}{23}$$
Aggiungi la costante di integrazione:
$$\int{\frac{\sin{\left(x \right)}}{23} d x} = - \frac{\cos{\left(x \right)}}{23}+C$$
Risposta
$$$\int \frac{\sin{\left(x \right)}}{23}\, dx = - \frac{\cos{\left(x \right)}}{23} + C$$$A