Ολοκλήρωμα του $$$\frac{\sin{\left(x \right)}}{23}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{\sin{\left(x \right)}}{23}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{\sin{\left(x \right)}}{23}\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{23}$$$ και $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:

$${\color{red}{\int{\frac{\sin{\left(x \right)}}{23} d x}}} = {\color{red}{\left(\frac{\int{\sin{\left(x \right)} d x}}{23}\right)}}$$

Το ολοκλήρωμα του ημιτόνου είναι $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{23} = \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{23}$$

Επομένως,

$$\int{\frac{\sin{\left(x \right)}}{23} d x} = - \frac{\cos{\left(x \right)}}{23}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{\sin{\left(x \right)}}{23} d x} = - \frac{\cos{\left(x \right)}}{23}+C$$

Απάντηση

$$$\int \frac{\sin{\left(x \right)}}{23}\, dx = - \frac{\cos{\left(x \right)}}{23} + C$$$A


Please try a new game Rotatly