Integral von $$$\frac{t^{2}}{14}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{t^{2}}{14}\, dt$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ mit $$$c=\frac{1}{14}$$$ und $$$f{\left(t \right)} = t^{2}$$$ an:
$${\color{red}{\int{\frac{t^{2}}{14} d t}}} = {\color{red}{\left(\frac{\int{t^{2} d t}}{14}\right)}}$$
Wenden Sie die Potenzregel $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=2$$$ an:
$$\frac{{\color{red}{\int{t^{2} d t}}}}{14}=\frac{{\color{red}{\frac{t^{1 + 2}}{1 + 2}}}}{14}=\frac{{\color{red}{\left(\frac{t^{3}}{3}\right)}}}{14}$$
Daher,
$$\int{\frac{t^{2}}{14} d t} = \frac{t^{3}}{42}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{t^{2}}{14} d t} = \frac{t^{3}}{42}+C$$
Antwort
$$$\int \frac{t^{2}}{14}\, dt = \frac{t^{3}}{42} + C$$$A