Integral of $$$\frac{t^{2}}{14}$$$

The calculator will find the integral/antiderivative of $$$\frac{t^{2}}{14}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{t^{2}}{14}\, dt$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{14}$$$ and $$$f{\left(t \right)} = t^{2}$$$:

$${\color{red}{\int{\frac{t^{2}}{14} d t}}} = {\color{red}{\left(\frac{\int{t^{2} d t}}{14}\right)}}$$

Apply the power rule $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$\frac{{\color{red}{\int{t^{2} d t}}}}{14}=\frac{{\color{red}{\frac{t^{1 + 2}}{1 + 2}}}}{14}=\frac{{\color{red}{\left(\frac{t^{3}}{3}\right)}}}{14}$$

Therefore,

$$\int{\frac{t^{2}}{14} d t} = \frac{t^{3}}{42}$$

Add the constant of integration:

$$\int{\frac{t^{2}}{14} d t} = \frac{t^{3}}{42}+C$$

Answer

$$$\int \frac{t^{2}}{14}\, dt = \frac{t^{3}}{42} + C$$$A


Please try a new game Rotatly