Integral von $$$\frac{\csc^{2}{\left(x \right)}}{9}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\csc^{2}{\left(x \right)}}{9}\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{9}$$$ und $$$f{\left(x \right)} = \csc^{2}{\left(x \right)}$$$ an:
$${\color{red}{\int{\frac{\csc^{2}{\left(x \right)}}{9} d x}}} = {\color{red}{\left(\frac{\int{\csc^{2}{\left(x \right)} d x}}{9}\right)}}$$
Das Integral von $$$\csc^{2}{\left(x \right)}$$$ ist $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\csc^{2}{\left(x \right)} d x}}}}{9} = \frac{{\color{red}{\left(- \cot{\left(x \right)}\right)}}}{9}$$
Daher,
$$\int{\frac{\csc^{2}{\left(x \right)}}{9} d x} = - \frac{\cot{\left(x \right)}}{9}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\csc^{2}{\left(x \right)}}{9} d x} = - \frac{\cot{\left(x \right)}}{9}+C$$
Antwort
$$$\int \frac{\csc^{2}{\left(x \right)}}{9}\, dx = - \frac{\cot{\left(x \right)}}{9} + C$$$A