Integral de $$$\frac{\csc^{2}{\left(x \right)}}{9}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{\csc^{2}{\left(x \right)}}{9}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{\csc^{2}{\left(x \right)}}{9}\, dx$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{9}$$$ y $$$f{\left(x \right)} = \csc^{2}{\left(x \right)}$$$:

$${\color{red}{\int{\frac{\csc^{2}{\left(x \right)}}{9} d x}}} = {\color{red}{\left(\frac{\int{\csc^{2}{\left(x \right)} d x}}{9}\right)}}$$

La integral de $$$\csc^{2}{\left(x \right)}$$$ es $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:

$$\frac{{\color{red}{\int{\csc^{2}{\left(x \right)} d x}}}}{9} = \frac{{\color{red}{\left(- \cot{\left(x \right)}\right)}}}{9}$$

Por lo tanto,

$$\int{\frac{\csc^{2}{\left(x \right)}}{9} d x} = - \frac{\cot{\left(x \right)}}{9}$$

Añade la constante de integración:

$$\int{\frac{\csc^{2}{\left(x \right)}}{9} d x} = - \frac{\cot{\left(x \right)}}{9}+C$$

Respuesta

$$$\int \frac{\csc^{2}{\left(x \right)}}{9}\, dx = - \frac{\cot{\left(x \right)}}{9} + C$$$A


Please try a new game Rotatly