$$$\frac{\csc^{2}{\left(x \right)}}{9}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{\csc^{2}{\left(x \right)}}{9}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\csc^{2}{\left(x \right)}}{9}\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{9}$$$ ve $$$f{\left(x \right)} = \csc^{2}{\left(x \right)}$$$ ile uygula:

$${\color{red}{\int{\frac{\csc^{2}{\left(x \right)}}{9} d x}}} = {\color{red}{\left(\frac{\int{\csc^{2}{\left(x \right)} d x}}{9}\right)}}$$

$$$\csc^{2}{\left(x \right)}$$$'nin integrali $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:

$$\frac{{\color{red}{\int{\csc^{2}{\left(x \right)} d x}}}}{9} = \frac{{\color{red}{\left(- \cot{\left(x \right)}\right)}}}{9}$$

Dolayısıyla,

$$\int{\frac{\csc^{2}{\left(x \right)}}{9} d x} = - \frac{\cot{\left(x \right)}}{9}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\csc^{2}{\left(x \right)}}{9} d x} = - \frac{\cot{\left(x \right)}}{9}+C$$

Cevap

$$$\int \frac{\csc^{2}{\left(x \right)}}{9}\, dx = - \frac{\cot{\left(x \right)}}{9} + C$$$A


Please try a new game Rotatly