Integral von $$$\sqrt{- a^{2} + x^{2}}$$$ nach $$$x$$$

Der Rechner findet das Integral/die Stammfunktion von $$$\sqrt{- a^{2} + x^{2}}$$$ nach $$$x$$$ und zeigt die Schritte an.

Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale

Bitte schreiben Sie ohne Differentiale wie $$$dx$$$, $$$dy$$$ usw.
Für automatische Erkennung leer lassen.

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Bestimme $$$\int \sqrt{- a^{2} + x^{2}}\, dx$$$.

Lösung

Sei $$$x=\cosh{\left(u \right)} \left|{a}\right|$$$.

Dann $$$dx=\left(\cosh{\left(u \right)} \left|{a}\right|\right)^{\prime }du = \sinh{\left(u \right)} \left|{a}\right| du$$$ (die Schritte sind » zu sehen).

Somit folgt, dass $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$.

Der Integrand wird zu

$$$\sqrt{- a^{2} + x^{2}} = \sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}$$$

Verwenden Sie die Identität $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:

$$$\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}=\sqrt{\cosh^{2}{\left( u \right)} - 1} \left|{a}\right|=\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right|$$$

Setzen wir $$$\sinh{\left( u \right)} \ge 0$$$ voraus, so erhalten wir Folgendes:

$$$\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right| = \sinh{\left( u \right)} \left|{a}\right|$$$

Das Integral kann umgeschrieben werden als

$${\color{red}{\int{\sqrt{- a^{2} + x^{2}} d x}}} = {\color{red}{\int{a^{2} \sinh^{2}{\left(u \right)} d u}}}$$

Wende die Potenzreduktionsformel $$$\sinh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} - \frac{1}{2}$$$ mit $$$\alpha= u $$$ an:

$${\color{red}{\int{a^{2} \sinh^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{a^{2} \left(\cosh{\left(2 u \right)} - 1\right)}{2} d u}}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = a^{2} \left(\cosh{\left(2 u \right)} - 1\right)$$$ an:

$${\color{red}{\int{\frac{a^{2} \left(\cosh{\left(2 u \right)} - 1\right)}{2} d u}}} = {\color{red}{\left(\frac{\int{a^{2} \left(\cosh{\left(2 u \right)} - 1\right) d u}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{a^{2} \left(\cosh{\left(2 u \right)} - 1\right) d u}}}}{2} = \frac{{\color{red}{\int{\left(a^{2} \cosh{\left(2 u \right)} - a^{2}\right)d u}}}}{2}$$

Gliedweise integrieren:

$$\frac{{\color{red}{\int{\left(a^{2} \cosh{\left(2 u \right)} - a^{2}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{a^{2} d u} + \int{a^{2} \cosh{\left(2 u \right)} d u}\right)}}}{2}$$

Wenden Sie die Konstantenregel $$$\int c\, du = c u$$$ mit $$$c=a^{2}$$$ an:

$$\frac{\int{a^{2} \cosh{\left(2 u \right)} d u}}{2} - \frac{{\color{red}{\int{a^{2} d u}}}}{2} = \frac{\int{a^{2} \cosh{\left(2 u \right)} d u}}{2} - \frac{{\color{red}{a^{2} u}}}{2}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=a^{2}$$$ und $$$f{\left(u \right)} = \cosh{\left(2 u \right)}$$$ an:

$$- \frac{a^{2} u}{2} + \frac{{\color{red}{\int{a^{2} \cosh{\left(2 u \right)} d u}}}}{2} = - \frac{a^{2} u}{2} + \frac{{\color{red}{a^{2} \int{\cosh{\left(2 u \right)} d u}}}}{2}$$

Sei $$$v=2 u$$$.

Dann $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (die Schritte sind » zu sehen), und es gilt $$$du = \frac{dv}{2}$$$.

Somit,

$$- \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\cosh{\left(2 u \right)} d u}}}}{2} = - \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{2}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(v \right)} = \cosh{\left(v \right)}$$$ an:

$$- \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{2} = - \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\left(\frac{\int{\cosh{\left(v \right)} d v}}{2}\right)}}}{2}$$

Das Integral des hyperbolischen Kosinus ist $$$\int{\cosh{\left(v \right)} d v} = \sinh{\left(v \right)}$$$:

$$- \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\cosh{\left(v \right)} d v}}}}{4} = - \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\sinh{\left(v \right)}}}}{4}$$

Zur Erinnerung: $$$v=2 u$$$:

$$- \frac{a^{2} u}{2} + \frac{a^{2} \sinh{\left({\color{red}{v}} \right)}}{4} = - \frac{a^{2} u}{2} + \frac{a^{2} \sinh{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$

Zur Erinnerung: $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$:

$$\frac{a^{2} \sinh{\left(2 {\color{red}{u}} \right)}}{4} - \frac{a^{2} {\color{red}{u}}}{2} = \frac{a^{2} \sinh{\left(2 {\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}} \right)}}{4} - \frac{a^{2} {\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}}}{2}$$

Daher,

$$\int{\sqrt{- a^{2} + x^{2}} d x} = \frac{a^{2} \sinh{\left(2 \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)} \right)}}{4} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$

Verwenden Sie die Formeln $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, um den Ausdruck zu vereinfachen:

$$\int{\sqrt{- a^{2} + x^{2}} d x} = \frac{a^{2} x \sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$

Fügen Sie die Integrationskonstante hinzu:

$$\int{\sqrt{- a^{2} + x^{2}} d x} = \frac{a^{2} x \sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}+C$$

Antwort

$$$\int \sqrt{- a^{2} + x^{2}}\, dx = \left(\frac{a^{2} x \sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}\right) + C$$$A


Please try a new game Rotatly