$$$\sqrt{- a^{2} + x^{2}}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \sqrt{- a^{2} + x^{2}}\, dx$$$。
解答
设$$$x=\cosh{\left(u \right)} \left|{a}\right|$$$。
则$$$dx=\left(\cosh{\left(u \right)} \left|{a}\right|\right)^{\prime }du = \sinh{\left(u \right)} \left|{a}\right| du$$$(步骤见»)。
此外,可得$$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$。
被积函数变为
$$$\sqrt{- a^{2} + x^{2}} = \sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}$$$
利用恒等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}=\sqrt{\cosh^{2}{\left( u \right)} - 1} \left|{a}\right|=\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right|$$$
假设$$$\sinh{\left( u \right)} \ge 0$$$,我们得到如下结果:
$$$\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right| = \sinh{\left( u \right)} \left|{a}\right|$$$
所以,
$${\color{red}{\int{\sqrt{- a^{2} + x^{2}} d x}}} = {\color{red}{\int{a^{2} \sinh^{2}{\left(u \right)} d u}}}$$
应用降幂公式 $$$\sinh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} - \frac{1}{2}$$$,并令 $$$\alpha= u $$$:
$${\color{red}{\int{a^{2} \sinh^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{a^{2} \left(\cosh{\left(2 u \right)} - 1\right)}{2} d u}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = a^{2} \left(\cosh{\left(2 u \right)} - 1\right)$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{a^{2} \left(\cosh{\left(2 u \right)} - 1\right)}{2} d u}}} = {\color{red}{\left(\frac{\int{a^{2} \left(\cosh{\left(2 u \right)} - 1\right) d u}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{a^{2} \left(\cosh{\left(2 u \right)} - 1\right) d u}}}}{2} = \frac{{\color{red}{\int{\left(a^{2} \cosh{\left(2 u \right)} - a^{2}\right)d u}}}}{2}$$
逐项积分:
$$\frac{{\color{red}{\int{\left(a^{2} \cosh{\left(2 u \right)} - a^{2}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{a^{2} d u} + \int{a^{2} \cosh{\left(2 u \right)} d u}\right)}}}{2}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=a^{2}$$$:
$$\frac{\int{a^{2} \cosh{\left(2 u \right)} d u}}{2} - \frac{{\color{red}{\int{a^{2} d u}}}}{2} = \frac{\int{a^{2} \cosh{\left(2 u \right)} d u}}{2} - \frac{{\color{red}{a^{2} u}}}{2}$$
对 $$$c=a^{2}$$$ 和 $$$f{\left(u \right)} = \cosh{\left(2 u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$- \frac{a^{2} u}{2} + \frac{{\color{red}{\int{a^{2} \cosh{\left(2 u \right)} d u}}}}{2} = - \frac{a^{2} u}{2} + \frac{{\color{red}{a^{2} \int{\cosh{\left(2 u \right)} d u}}}}{2}$$
设$$$v=2 u$$$。
则$$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (步骤见»),并有$$$du = \frac{dv}{2}$$$。
积分变为
$$- \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\cosh{\left(2 u \right)} d u}}}}{2} = - \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{2}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(v \right)} = \cosh{\left(v \right)}$$$ 应用常数倍法则 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$:
$$- \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{2} = - \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\left(\frac{\int{\cosh{\left(v \right)} d v}}{2}\right)}}}{2}$$
双曲余弦的积分为 $$$\int{\cosh{\left(v \right)} d v} = \sinh{\left(v \right)}$$$:
$$- \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\cosh{\left(v \right)} d v}}}}{4} = - \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\sinh{\left(v \right)}}}}{4}$$
回忆一下 $$$v=2 u$$$:
$$- \frac{a^{2} u}{2} + \frac{a^{2} \sinh{\left({\color{red}{v}} \right)}}{4} = - \frac{a^{2} u}{2} + \frac{a^{2} \sinh{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$
回忆一下 $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$:
$$\frac{a^{2} \sinh{\left(2 {\color{red}{u}} \right)}}{4} - \frac{a^{2} {\color{red}{u}}}{2} = \frac{a^{2} \sinh{\left(2 {\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}} \right)}}{4} - \frac{a^{2} {\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}}}{2}$$
因此,
$$\int{\sqrt{- a^{2} + x^{2}} d x} = \frac{a^{2} \sinh{\left(2 \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)} \right)}}{4} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$
使用公式 $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$,化简该表达式:
$$\int{\sqrt{- a^{2} + x^{2}} d x} = \frac{a^{2} x \sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$
加上积分常数:
$$\int{\sqrt{- a^{2} + x^{2}} d x} = \frac{a^{2} x \sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}+C$$
答案
$$$\int \sqrt{- a^{2} + x^{2}}\, dx = \left(\frac{a^{2} x \sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}\right) + C$$$A