Integraal van $$$\sqrt{- a^{2} + x^{2}}$$$ met betrekking tot $$$x$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \sqrt{- a^{2} + x^{2}}\, dx$$$.
Oplossing
Zij $$$x=\cosh{\left(u \right)} \left|{a}\right|$$$.
Dan $$$dx=\left(\cosh{\left(u \right)} \left|{a}\right|\right)^{\prime }du = \sinh{\left(u \right)} \left|{a}\right| du$$$ (zie » voor de stappen).
Bovendien volgt dat $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$.
Dus,
$$$\sqrt{- a^{2} + x^{2}} = \sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}$$$
Gebruik de identiteit $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}=\sqrt{\cosh^{2}{\left( u \right)} - 1} \left|{a}\right|=\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right|$$$
Aangenomen dat $$$\sinh{\left( u \right)} \ge 0$$$, verkrijgen we het volgende:
$$$\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right| = \sinh{\left( u \right)} \left|{a}\right|$$$
De integraal kan worden herschreven als
$${\color{red}{\int{\sqrt{- a^{2} + x^{2}} d x}}} = {\color{red}{\int{a^{2} \sinh^{2}{\left(u \right)} d u}}}$$
Pas de machtsreductieformule $$$\sinh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} - \frac{1}{2}$$$ toe met $$$\alpha= u $$$:
$${\color{red}{\int{a^{2} \sinh^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{a^{2} \left(\cosh{\left(2 u \right)} - 1\right)}{2} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = a^{2} \left(\cosh{\left(2 u \right)} - 1\right)$$$:
$${\color{red}{\int{\frac{a^{2} \left(\cosh{\left(2 u \right)} - 1\right)}{2} d u}}} = {\color{red}{\left(\frac{\int{a^{2} \left(\cosh{\left(2 u \right)} - 1\right) d u}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{a^{2} \left(\cosh{\left(2 u \right)} - 1\right) d u}}}}{2} = \frac{{\color{red}{\int{\left(a^{2} \cosh{\left(2 u \right)} - a^{2}\right)d u}}}}{2}$$
Integreer termgewijs:
$$\frac{{\color{red}{\int{\left(a^{2} \cosh{\left(2 u \right)} - a^{2}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{a^{2} d u} + \int{a^{2} \cosh{\left(2 u \right)} d u}\right)}}}{2}$$
Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=a^{2}$$$:
$$\frac{\int{a^{2} \cosh{\left(2 u \right)} d u}}{2} - \frac{{\color{red}{\int{a^{2} d u}}}}{2} = \frac{\int{a^{2} \cosh{\left(2 u \right)} d u}}{2} - \frac{{\color{red}{a^{2} u}}}{2}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=a^{2}$$$ en $$$f{\left(u \right)} = \cosh{\left(2 u \right)}$$$:
$$- \frac{a^{2} u}{2} + \frac{{\color{red}{\int{a^{2} \cosh{\left(2 u \right)} d u}}}}{2} = - \frac{a^{2} u}{2} + \frac{{\color{red}{a^{2} \int{\cosh{\left(2 u \right)} d u}}}}{2}$$
Zij $$$v=2 u$$$.
Dan $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (de stappen zijn te zien »), en dan geldt dat $$$du = \frac{dv}{2}$$$.
De integraal wordt
$$- \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\cosh{\left(2 u \right)} d u}}}}{2} = - \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{2}$$
Pas de constante-veelvoudregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(v \right)} = \cosh{\left(v \right)}$$$:
$$- \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{2} = - \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\left(\frac{\int{\cosh{\left(v \right)} d v}}{2}\right)}}}{2}$$
De integraal van de cosinus hyperbolicus is $$$\int{\cosh{\left(v \right)} d v} = \sinh{\left(v \right)}$$$:
$$- \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\cosh{\left(v \right)} d v}}}}{4} = - \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\sinh{\left(v \right)}}}}{4}$$
We herinneren eraan dat $$$v=2 u$$$:
$$- \frac{a^{2} u}{2} + \frac{a^{2} \sinh{\left({\color{red}{v}} \right)}}{4} = - \frac{a^{2} u}{2} + \frac{a^{2} \sinh{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$
We herinneren eraan dat $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$:
$$\frac{a^{2} \sinh{\left(2 {\color{red}{u}} \right)}}{4} - \frac{a^{2} {\color{red}{u}}}{2} = \frac{a^{2} \sinh{\left(2 {\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}} \right)}}{4} - \frac{a^{2} {\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}}}{2}$$
Dus,
$$\int{\sqrt{- a^{2} + x^{2}} d x} = \frac{a^{2} \sinh{\left(2 \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)} \right)}}{4} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$
Gebruik de formules $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$ om de uitdrukking te vereenvoudigen:
$$\int{\sqrt{- a^{2} + x^{2}} d x} = \frac{a^{2} x \sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$
Voeg de integratieconstante toe:
$$\int{\sqrt{- a^{2} + x^{2}} d x} = \frac{a^{2} x \sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}+C$$
Antwoord
$$$\int \sqrt{- a^{2} + x^{2}}\, dx = \left(\frac{a^{2} x \sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}\right) + C$$$A