Ολοκλήρωμα της $$$\sqrt{- a^{2} + x^{2}}$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$\sqrt{- a^{2} + x^{2}}$$$ ως προς $$$x$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \sqrt{- a^{2} + x^{2}}\, dx$$$.

Λύση

Έστω $$$x=\cosh{\left(u \right)} \left|{a}\right|$$$.

Τότε $$$dx=\left(\cosh{\left(u \right)} \left|{a}\right|\right)^{\prime }du = \sinh{\left(u \right)} \left|{a}\right| du$$$ (τα βήματα μπορούν να προβληθούν »).

Επίσης, έπεται ότι $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$.

Ο ολοκληρωτέος γίνεται

$$$\sqrt{- a^{2} + x^{2}} = \sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}$$$

Χρησιμοποιήστε την ταυτότητα $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:

$$$\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}=\sqrt{\cosh^{2}{\left( u \right)} - 1} \left|{a}\right|=\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right|$$$

Υποθέτοντας ότι $$$\sinh{\left( u \right)} \ge 0$$$, προκύπτουν τα ακόλουθα:

$$$\sqrt{\sinh^{2}{\left( u \right)}} \left|{a}\right| = \sinh{\left( u \right)} \left|{a}\right|$$$

Επομένως,

$${\color{red}{\int{\sqrt{- a^{2} + x^{2}} d x}}} = {\color{red}{\int{a^{2} \sinh^{2}{\left(u \right)} d u}}}$$

Εφαρμόστε τον τύπο υποβιβασμού δυνάμεων $$$\sinh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} - \frac{1}{2}$$$ με $$$\alpha= u $$$:

$${\color{red}{\int{a^{2} \sinh^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{a^{2} \left(\cosh{\left(2 u \right)} - 1\right)}{2} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(u \right)} = a^{2} \left(\cosh{\left(2 u \right)} - 1\right)$$$:

$${\color{red}{\int{\frac{a^{2} \left(\cosh{\left(2 u \right)} - 1\right)}{2} d u}}} = {\color{red}{\left(\frac{\int{a^{2} \left(\cosh{\left(2 u \right)} - 1\right) d u}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{a^{2} \left(\cosh{\left(2 u \right)} - 1\right) d u}}}}{2} = \frac{{\color{red}{\int{\left(a^{2} \cosh{\left(2 u \right)} - a^{2}\right)d u}}}}{2}$$

Ολοκληρώστε όρο προς όρο:

$$\frac{{\color{red}{\int{\left(a^{2} \cosh{\left(2 u \right)} - a^{2}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{a^{2} d u} + \int{a^{2} \cosh{\left(2 u \right)} d u}\right)}}}{2}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=a^{2}$$$:

$$\frac{\int{a^{2} \cosh{\left(2 u \right)} d u}}{2} - \frac{{\color{red}{\int{a^{2} d u}}}}{2} = \frac{\int{a^{2} \cosh{\left(2 u \right)} d u}}{2} - \frac{{\color{red}{a^{2} u}}}{2}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=a^{2}$$$ και $$$f{\left(u \right)} = \cosh{\left(2 u \right)}$$$:

$$- \frac{a^{2} u}{2} + \frac{{\color{red}{\int{a^{2} \cosh{\left(2 u \right)} d u}}}}{2} = - \frac{a^{2} u}{2} + \frac{{\color{red}{a^{2} \int{\cosh{\left(2 u \right)} d u}}}}{2}$$

Έστω $$$v=2 u$$$.

Τότε $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$du = \frac{dv}{2}$$$.

Το ολοκλήρωμα γίνεται

$$- \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\cosh{\left(2 u \right)} d u}}}}{2} = - \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{2}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(v \right)} = \cosh{\left(v \right)}$$$:

$$- \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\frac{\cosh{\left(v \right)}}{2} d v}}}}{2} = - \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\left(\frac{\int{\cosh{\left(v \right)} d v}}{2}\right)}}}{2}$$

Το ολοκλήρωμα του υπερβολικού συνημιτόνου είναι $$$\int{\cosh{\left(v \right)} d v} = \sinh{\left(v \right)}$$$:

$$- \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\int{\cosh{\left(v \right)} d v}}}}{4} = - \frac{a^{2} u}{2} + \frac{a^{2} {\color{red}{\sinh{\left(v \right)}}}}{4}$$

Θυμηθείτε ότι $$$v=2 u$$$:

$$- \frac{a^{2} u}{2} + \frac{a^{2} \sinh{\left({\color{red}{v}} \right)}}{4} = - \frac{a^{2} u}{2} + \frac{a^{2} \sinh{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$

Θυμηθείτε ότι $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$:

$$\frac{a^{2} \sinh{\left(2 {\color{red}{u}} \right)}}{4} - \frac{a^{2} {\color{red}{u}}}{2} = \frac{a^{2} \sinh{\left(2 {\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}} \right)}}{4} - \frac{a^{2} {\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}}}{2}$$

Επομένως,

$$\int{\sqrt{- a^{2} + x^{2}} d x} = \frac{a^{2} \sinh{\left(2 \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)} \right)}}{4} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$

Χρησιμοποιώντας τους τύπους $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, απλοποιήστε την παράσταση:

$$\int{\sqrt{- a^{2} + x^{2}} d x} = \frac{a^{2} x \sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\sqrt{- a^{2} + x^{2}} d x} = \frac{a^{2} x \sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}+C$$

Απάντηση

$$$\int \sqrt{- a^{2} + x^{2}}\, dx = \left(\frac{a^{2} x \sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1}}{2 \left|{a}\right|} - \frac{a^{2} \operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}{2}\right) + C$$$A


Please try a new game Rotatly