Integral von $$$\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\sin{\left(1 \right)}$$$ und $$$f{\left(x \right)} = \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ an:
$${\color{red}{\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\sin{\left(1 \right)} \int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}}$$
Schreibe in Abhängigkeit vom Kotangens um:
$$\sin{\left(1 \right)} {\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = \sin{\left(1 \right)} {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}}$$
Sei $$$u=\cot{\left(x \right)}$$$.
Dann $$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\csc^{2}{\left(x \right)} dx = - du$$$.
Das Integral lässt sich umschreiben als
$$\sin{\left(1 \right)} {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = \sin{\left(1 \right)} {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=-1$$$ und $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$ an:
$$\sin{\left(1 \right)} {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = \sin{\left(1 \right)} {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$
Forme den Bruch um und zerlege ihn:
$$- \sin{\left(1 \right)} {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - \sin{\left(1 \right)} {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
Gliedweise integrieren:
$$- \sin{\left(1 \right)} {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - \sin{\left(1 \right)} {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, du = c u$$$ mit $$$c=1$$$ an:
$$- \sin{\left(1 \right)} \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}}\right) = - \sin{\left(1 \right)} \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}\right)$$
Das Integral von $$$\frac{1}{u^{2} + 1}$$$ ist $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$- \sin{\left(1 \right)} \left(u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}\right) = - \sin{\left(1 \right)} \left(u - {\color{red}{\operatorname{atan}{\left(u \right)}}}\right)$$
Zur Erinnerung: $$$u=\cot{\left(x \right)}$$$:
$$- \sin{\left(1 \right)} \left(- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}}\right) = - \sin{\left(1 \right)} \left(- \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} + {\color{red}{\cot{\left(x \right)}}}\right)$$
Daher,
$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \left(\cot{\left(x \right)} - \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}$$
Vereinfachen:
$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}+C$$
Antwort
$$$\int \frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)} + C$$$A