$$$\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ 的积分

该计算器将求出$$$\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx$$$

三角函数的参数应以弧度表示。若要以角度输入参数,请将其乘以 pi/180,例如把 45° 写为 45*pi/180,或者使用带有 'd' 的相应函数,例如把 sin(45°) 写为 sind(45)。

解答

$$$c=\sin{\left(1 \right)}$$$$$$f{\left(x \right)} = \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\sin{\left(1 \right)} \int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}}$$

用余切表示:

$$\sin{\left(1 \right)} {\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = \sin{\left(1 \right)} {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}}$$

$$$u=\cot{\left(x \right)}$$$

$$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (步骤见»),并有$$$\csc^{2}{\left(x \right)} dx = - du$$$

该积分可以改写为

$$\sin{\left(1 \right)} {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = \sin{\left(1 \right)} {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$

$$$c=-1$$$$$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\sin{\left(1 \right)} {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = \sin{\left(1 \right)} {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$

改写并拆分该分式:

$$- \sin{\left(1 \right)} {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - \sin{\left(1 \right)} {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

逐项积分:

$$- \sin{\left(1 \right)} {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - \sin{\left(1 \right)} {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$

$$- \sin{\left(1 \right)} \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}}\right) = - \sin{\left(1 \right)} \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}\right)$$

$$$\frac{1}{u^{2} + 1}$$$ 的积分为 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- \sin{\left(1 \right)} \left(u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}\right) = - \sin{\left(1 \right)} \left(u - {\color{red}{\operatorname{atan}{\left(u \right)}}}\right)$$

回忆一下 $$$u=\cot{\left(x \right)}$$$:

$$- \sin{\left(1 \right)} \left(- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}}\right) = - \sin{\left(1 \right)} \left(- \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} + {\color{red}{\cot{\left(x \right)}}}\right)$$

因此,

$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \left(\cot{\left(x \right)} - \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}$$

化简:

$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}$$

加上积分常数:

$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}+C$$

答案

$$$\int \frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)} + C$$$A


Please try a new game Rotatly