$$$\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ 的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx$$$。
解答
对 $$$c=\sin{\left(1 \right)}$$$ 和 $$$f{\left(x \right)} = \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\sin{\left(1 \right)} \int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}}$$
用余切表示:
$$\sin{\left(1 \right)} {\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = \sin{\left(1 \right)} {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}}$$
设$$$u=\cot{\left(x \right)}$$$。
则$$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (步骤见»),并有$$$\csc^{2}{\left(x \right)} dx = - du$$$。
该积分可以改写为
$$\sin{\left(1 \right)} {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = \sin{\left(1 \right)} {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\sin{\left(1 \right)} {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = \sin{\left(1 \right)} {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$
改写并拆分该分式:
$$- \sin{\left(1 \right)} {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - \sin{\left(1 \right)} {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
逐项积分:
$$- \sin{\left(1 \right)} {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - \sin{\left(1 \right)} {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$- \sin{\left(1 \right)} \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}}\right) = - \sin{\left(1 \right)} \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}\right)$$
$$$\frac{1}{u^{2} + 1}$$$ 的积分为 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$- \sin{\left(1 \right)} \left(u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}\right) = - \sin{\left(1 \right)} \left(u - {\color{red}{\operatorname{atan}{\left(u \right)}}}\right)$$
回忆一下 $$$u=\cot{\left(x \right)}$$$:
$$- \sin{\left(1 \right)} \left(- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}}\right) = - \sin{\left(1 \right)} \left(- \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} + {\color{red}{\cot{\left(x \right)}}}\right)$$
因此,
$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \left(\cot{\left(x \right)} - \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}$$
化简:
$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}$$
加上积分常数:
$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}+C$$
答案
$$$\int \frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)} + C$$$A