Integral de $$$\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx$$$.

Las funciones trigonométricas esperan el argumento en radianes. Para introducir el argumento en grados, multiplícalo por pi/180; por ejemplo, escribe 45° como 45*pi/180, o utiliza la función apropiada añadiendo 'd'; por ejemplo, escribe sin(45°) como sind(45).

Solución

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\sin{\left(1 \right)}$$$ y $$$f{\left(x \right)} = \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$:

$${\color{red}{\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\sin{\left(1 \right)} \int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}}$$

Reescribe en términos de la cotangente:

$$\sin{\left(1 \right)} {\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = \sin{\left(1 \right)} {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}}$$

Sea $$$u=\cot{\left(x \right)}$$$.

Entonces $$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\csc^{2}{\left(x \right)} dx = - du$$$.

La integral puede reescribirse como

$$\sin{\left(1 \right)} {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = \sin{\left(1 \right)} {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ y $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:

$$\sin{\left(1 \right)} {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = \sin{\left(1 \right)} {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$

Reescribe y separa la fracción:

$$- \sin{\left(1 \right)} {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - \sin{\left(1 \right)} {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Integra término a término:

$$- \sin{\left(1 \right)} {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - \sin{\left(1 \right)} {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Aplica la regla de la constante $$$\int c\, du = c u$$$ con $$$c=1$$$:

$$- \sin{\left(1 \right)} \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}}\right) = - \sin{\left(1 \right)} \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}\right)$$

La integral de $$$\frac{1}{u^{2} + 1}$$$ es $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- \sin{\left(1 \right)} \left(u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}\right) = - \sin{\left(1 \right)} \left(u - {\color{red}{\operatorname{atan}{\left(u \right)}}}\right)$$

Recordemos que $$$u=\cot{\left(x \right)}$$$:

$$- \sin{\left(1 \right)} \left(- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}}\right) = - \sin{\left(1 \right)} \left(- \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} + {\color{red}{\cot{\left(x \right)}}}\right)$$

Por lo tanto,

$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \left(\cot{\left(x \right)} - \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}$$

Simplificar:

$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}$$

Añade la constante de integración:

$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}+C$$

Respuesta

$$$\int \frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)} + C$$$A


Please try a new game Rotatly