$$$\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ 的積分

此計算器將求出 $$$\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx$$$

三角函數的參數預設為弧度。若要以度為單位輸入,請將參數乘以 pi/180,例如將 45° 寫成 45*pi/180;或使用在函數名稱後加上 'd' 的對應函數,例如將 sin(45°) 寫成 sind(45)。

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\sin{\left(1 \right)}$$$$$$f{\left(x \right)} = \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$

$${\color{red}{\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\sin{\left(1 \right)} \int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}}$$

用餘切表示:

$$\sin{\left(1 \right)} {\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = \sin{\left(1 \right)} {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}}$$

$$$u=\cot{\left(x \right)}$$$

$$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\csc^{2}{\left(x \right)} dx = - du$$$

所以,

$$\sin{\left(1 \right)} {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = \sin{\left(1 \right)} {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$$$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$

$$\sin{\left(1 \right)} {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = \sin{\left(1 \right)} {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$

重寫並拆分分式:

$$- \sin{\left(1 \right)} {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - \sin{\left(1 \right)} {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

逐項積分:

$$- \sin{\left(1 \right)} {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - \sin{\left(1 \right)} {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$

$$- \sin{\left(1 \right)} \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}}\right) = - \sin{\left(1 \right)} \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}\right)$$

$$$\frac{1}{u^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$

$$- \sin{\left(1 \right)} \left(u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}\right) = - \sin{\left(1 \right)} \left(u - {\color{red}{\operatorname{atan}{\left(u \right)}}}\right)$$

回顧一下 $$$u=\cot{\left(x \right)}$$$

$$- \sin{\left(1 \right)} \left(- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}}\right) = - \sin{\left(1 \right)} \left(- \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} + {\color{red}{\cot{\left(x \right)}}}\right)$$

因此,

$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \left(\cot{\left(x \right)} - \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}$$

化簡:

$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}$$

加上積分常數:

$$\int{\frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)}+C$$

答案

$$$\int \frac{\sin{\left(1 \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) \sin{\left(1 \right)} + C$$$A


Please try a new game Rotatly