Integral von $$$\frac{e^{x}}{- 9 x e^{2} + 16}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{e^{x}}{- 9 x e^{2} + 16}\, dx$$$.
Lösung
Sei $$$u=x - \frac{16}{9 e^{2}}$$$.
Dann $$$du=\left(x - \frac{16}{9 e^{2}}\right)^{\prime }dx = 1 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = du$$$.
Das Integral lässt sich umschreiben als
$${\color{red}{\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x}}} = {\color{red}{\int{\left(- \frac{e^{u + \frac{16}{9 e^{2}}}}{9 u e^{2}}\right)d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=- \frac{1}{9 e^{2}}$$$ und $$$f{\left(u \right)} = \frac{e^{u + \frac{16}{9 e^{2}}}}{u}$$$ an:
$${\color{red}{\int{\left(- \frac{e^{u + \frac{16}{9 e^{2}}}}{9 u e^{2}}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{e^{u + \frac{16}{9 e^{2}}}}{u} d u}}{9 e^{2}}\right)}}$$
Schreiben Sie den Integranden um:
$$- \frac{{\color{red}{\int{\frac{e^{u + \frac{16}{9 e^{2}}}}{u} d u}}}}{9 e^{2}} = - \frac{{\color{red}{\int{\frac{e^{u} e^{\frac{16}{9 e^{2}}}}{u} d u}}}}{9 e^{2}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=e^{\frac{16}{9 e^{2}}}$$$ und $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$ an:
$$- \frac{{\color{red}{\int{\frac{e^{u} e^{\frac{16}{9 e^{2}}}}{u} d u}}}}{9 e^{2}} = - \frac{{\color{red}{e^{\frac{16}{9 e^{2}}} \int{\frac{e^{u}}{u} d u}}}}{9 e^{2}}$$
Dieses Integral (Exponentialintegral) besitzt keine geschlossene Form:
$$- \frac{e^{\frac{16}{9 e^{2}}} {\color{red}{\int{\frac{e^{u}}{u} d u}}}}{9 e^{2}} = - \frac{e^{\frac{16}{9 e^{2}}} {\color{red}{\operatorname{Ei}{\left(u \right)}}}}{9 e^{2}}$$
Zur Erinnerung: $$$u=x - \frac{16}{9 e^{2}}$$$:
$$- \frac{e^{\frac{16}{9 e^{2}}} \operatorname{Ei}{\left({\color{red}{u}} \right)}}{9 e^{2}} = - \frac{e^{\frac{16}{9 e^{2}}} \operatorname{Ei}{\left({\color{red}{\left(x - \frac{16}{9 e^{2}}\right)}} \right)}}{9 e^{2}}$$
Daher,
$$\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x} = - \frac{e^{\frac{16}{9 e^{2}}} \operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2}}$$
Vereinfachen:
$$\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x} = - \frac{\operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2 - \frac{16}{9 e^{2}}}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x} = - \frac{\operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2 - \frac{16}{9 e^{2}}}}+C$$
Antwort
$$$\int \frac{e^{x}}{- 9 x e^{2} + 16}\, dx = - \frac{\operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2 - \frac{16}{9 e^{2}}}} + C$$$A