Integral dari $$$\frac{e^{x}}{- 9 x e^{2} + 16}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{e^{x}}{- 9 x e^{2} + 16}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{e^{x}}{- 9 x e^{2} + 16}\, dx$$$.

Solusi

Misalkan $$$u=x - \frac{16}{9 e^{2}}$$$.

Kemudian $$$du=\left(x - \frac{16}{9 e^{2}}\right)^{\prime }dx = 1 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = du$$$.

Integralnya menjadi

$${\color{red}{\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x}}} = {\color{red}{\int{\left(- \frac{e^{u + \frac{16}{9 e^{2}}}}{9 u e^{2}}\right)d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=- \frac{1}{9 e^{2}}$$$ dan $$$f{\left(u \right)} = \frac{e^{u + \frac{16}{9 e^{2}}}}{u}$$$:

$${\color{red}{\int{\left(- \frac{e^{u + \frac{16}{9 e^{2}}}}{9 u e^{2}}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{e^{u + \frac{16}{9 e^{2}}}}{u} d u}}{9 e^{2}}\right)}}$$

Tulis ulang integran:

$$- \frac{{\color{red}{\int{\frac{e^{u + \frac{16}{9 e^{2}}}}{u} d u}}}}{9 e^{2}} = - \frac{{\color{red}{\int{\frac{e^{u} e^{\frac{16}{9 e^{2}}}}{u} d u}}}}{9 e^{2}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=e^{\frac{16}{9 e^{2}}}$$$ dan $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$:

$$- \frac{{\color{red}{\int{\frac{e^{u} e^{\frac{16}{9 e^{2}}}}{u} d u}}}}{9 e^{2}} = - \frac{{\color{red}{e^{\frac{16}{9 e^{2}}} \int{\frac{e^{u}}{u} d u}}}}{9 e^{2}}$$

Integral ini (Integral Eksponensial) tidak memiliki bentuk tertutup:

$$- \frac{e^{\frac{16}{9 e^{2}}} {\color{red}{\int{\frac{e^{u}}{u} d u}}}}{9 e^{2}} = - \frac{e^{\frac{16}{9 e^{2}}} {\color{red}{\operatorname{Ei}{\left(u \right)}}}}{9 e^{2}}$$

Ingat bahwa $$$u=x - \frac{16}{9 e^{2}}$$$:

$$- \frac{e^{\frac{16}{9 e^{2}}} \operatorname{Ei}{\left({\color{red}{u}} \right)}}{9 e^{2}} = - \frac{e^{\frac{16}{9 e^{2}}} \operatorname{Ei}{\left({\color{red}{\left(x - \frac{16}{9 e^{2}}\right)}} \right)}}{9 e^{2}}$$

Oleh karena itu,

$$\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x} = - \frac{e^{\frac{16}{9 e^{2}}} \operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2}}$$

Sederhanakan:

$$\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x} = - \frac{\operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2 - \frac{16}{9 e^{2}}}}$$

Tambahkan konstanta integrasi:

$$\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x} = - \frac{\operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2 - \frac{16}{9 e^{2}}}}+C$$

Jawaban

$$$\int \frac{e^{x}}{- 9 x e^{2} + 16}\, dx = - \frac{\operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2 - \frac{16}{9 e^{2}}}} + C$$$A


Please try a new game Rotatly