Integralen av $$$\frac{e^{x}}{- 9 x e^{2} + 16}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{e^{x}}{- 9 x e^{2} + 16}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{e^{x}}{- 9 x e^{2} + 16}\, dx$$$.

Lösning

Låt $$$u=x - \frac{16}{9 e^{2}}$$$ vara.

$$$du=\left(x - \frac{16}{9 e^{2}}\right)^{\prime }dx = 1 dx$$$ (stegen kan ses »), och vi har att $$$dx = du$$$.

Integralen blir

$${\color{red}{\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x}}} = {\color{red}{\int{\left(- \frac{e^{u + \frac{16}{9 e^{2}}}}{9 u e^{2}}\right)d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=- \frac{1}{9 e^{2}}$$$ och $$$f{\left(u \right)} = \frac{e^{u + \frac{16}{9 e^{2}}}}{u}$$$:

$${\color{red}{\int{\left(- \frac{e^{u + \frac{16}{9 e^{2}}}}{9 u e^{2}}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{e^{u + \frac{16}{9 e^{2}}}}{u} d u}}{9 e^{2}}\right)}}$$

Skriv om integranden:

$$- \frac{{\color{red}{\int{\frac{e^{u + \frac{16}{9 e^{2}}}}{u} d u}}}}{9 e^{2}} = - \frac{{\color{red}{\int{\frac{e^{u} e^{\frac{16}{9 e^{2}}}}{u} d u}}}}{9 e^{2}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=e^{\frac{16}{9 e^{2}}}$$$ och $$$f{\left(u \right)} = \frac{e^{u}}{u}$$$:

$$- \frac{{\color{red}{\int{\frac{e^{u} e^{\frac{16}{9 e^{2}}}}{u} d u}}}}{9 e^{2}} = - \frac{{\color{red}{e^{\frac{16}{9 e^{2}}} \int{\frac{e^{u}}{u} d u}}}}{9 e^{2}}$$

Denna integral (Exponentialintegralen) har ingen sluten form:

$$- \frac{e^{\frac{16}{9 e^{2}}} {\color{red}{\int{\frac{e^{u}}{u} d u}}}}{9 e^{2}} = - \frac{e^{\frac{16}{9 e^{2}}} {\color{red}{\operatorname{Ei}{\left(u \right)}}}}{9 e^{2}}$$

Kom ihåg att $$$u=x - \frac{16}{9 e^{2}}$$$:

$$- \frac{e^{\frac{16}{9 e^{2}}} \operatorname{Ei}{\left({\color{red}{u}} \right)}}{9 e^{2}} = - \frac{e^{\frac{16}{9 e^{2}}} \operatorname{Ei}{\left({\color{red}{\left(x - \frac{16}{9 e^{2}}\right)}} \right)}}{9 e^{2}}$$

Alltså,

$$\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x} = - \frac{e^{\frac{16}{9 e^{2}}} \operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2}}$$

Förenkla:

$$\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x} = - \frac{\operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2 - \frac{16}{9 e^{2}}}}$$

Lägg till integrationskonstanten:

$$\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x} = - \frac{\operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2 - \frac{16}{9 e^{2}}}}+C$$

Svar

$$$\int \frac{e^{x}}{- 9 x e^{2} + 16}\, dx = - \frac{\operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2 - \frac{16}{9 e^{2}}}} + C$$$A


Please try a new game Rotatly