$$$\frac{e^{x}}{- 9 x e^{2} + 16}$$$ 的积分

该计算器将求出$$$\frac{e^{x}}{- 9 x e^{2} + 16}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{e^{x}}{- 9 x e^{2} + 16}\, dx$$$

解答

$$$u=x - \frac{16}{9 e^{2}}$$$

$$$du=\left(x - \frac{16}{9 e^{2}}\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$

因此,

$${\color{red}{\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x}}} = {\color{red}{\int{\left(- \frac{e^{u + \frac{16}{9 e^{2}}}}{9 u e^{2}}\right)d u}}}$$

$$$c=- \frac{1}{9 e^{2}}$$$$$$f{\left(u \right)} = \frac{e^{u + \frac{16}{9 e^{2}}}}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\left(- \frac{e^{u + \frac{16}{9 e^{2}}}}{9 u e^{2}}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{e^{u + \frac{16}{9 e^{2}}}}{u} d u}}{9 e^{2}}\right)}}$$

改写被积函数:

$$- \frac{{\color{red}{\int{\frac{e^{u + \frac{16}{9 e^{2}}}}{u} d u}}}}{9 e^{2}} = - \frac{{\color{red}{\int{\frac{e^{u} e^{\frac{16}{9 e^{2}}}}{u} d u}}}}{9 e^{2}}$$

$$$c=e^{\frac{16}{9 e^{2}}}$$$$$$f{\left(u \right)} = \frac{e^{u}}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- \frac{{\color{red}{\int{\frac{e^{u} e^{\frac{16}{9 e^{2}}}}{u} d u}}}}{9 e^{2}} = - \frac{{\color{red}{e^{\frac{16}{9 e^{2}}} \int{\frac{e^{u}}{u} d u}}}}{9 e^{2}}$$

该积分(指数积分)没有闭式表达式:

$$- \frac{e^{\frac{16}{9 e^{2}}} {\color{red}{\int{\frac{e^{u}}{u} d u}}}}{9 e^{2}} = - \frac{e^{\frac{16}{9 e^{2}}} {\color{red}{\operatorname{Ei}{\left(u \right)}}}}{9 e^{2}}$$

回忆一下 $$$u=x - \frac{16}{9 e^{2}}$$$:

$$- \frac{e^{\frac{16}{9 e^{2}}} \operatorname{Ei}{\left({\color{red}{u}} \right)}}{9 e^{2}} = - \frac{e^{\frac{16}{9 e^{2}}} \operatorname{Ei}{\left({\color{red}{\left(x - \frac{16}{9 e^{2}}\right)}} \right)}}{9 e^{2}}$$

因此,

$$\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x} = - \frac{e^{\frac{16}{9 e^{2}}} \operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2}}$$

化简:

$$\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x} = - \frac{\operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2 - \frac{16}{9 e^{2}}}}$$

加上积分常数:

$$\int{\frac{e^{x}}{- 9 x e^{2} + 16} d x} = - \frac{\operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2 - \frac{16}{9 e^{2}}}}+C$$

答案

$$$\int \frac{e^{x}}{- 9 x e^{2} + 16}\, dx = - \frac{\operatorname{Ei}{\left(x - \frac{16}{9 e^{2}} \right)}}{9 e^{2 - \frac{16}{9 e^{2}}}} + C$$$A


Please try a new game Rotatly