Bestimme den Kegelschnitt $$$x^{2} - x y - y^{2} - 1 = 0$$$
Ähnliche Rechner: Parabelrechner, Kreisrechner, Ellipsenrechner, Hyperbel-Rechner
Ihre Eingabe
Bestimmen Sie den Typ und die Eigenschaften des Kegelschnitts $$$x^{2} - x y - y^{2} - 1 = 0$$$.
Lösung
Die allgemeine Gleichung eines Kegelschnitts lautet $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
In unserem Fall gilt $$$A = 1$$$, $$$B = -1$$$, $$$C = -1$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = -1$$$.
Die Diskriminante des Kegelschnitts ist $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 5$$$.
Als Nächstes, $$$B^{2} - 4 A C = 5$$$.
Da $$$B^{2} - 4 A C \gt 0$$$ gilt, stellt die Gleichung eine Hyperbel dar.
Um ihre Eigenschaften zu ermitteln, verwenden Sie den Hyperbelrechner.
Antwort
$$$x^{2} - x y - y^{2} - 1 = 0$$$A stellt eine Hyperbel dar.
Allgemeine Form: $$$x^{2} - x y - y^{2} - 1 = 0$$$A.
Graph: Siehe den Grafikrechner.