Integral of $$$\frac{e^{x}}{y}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{e^{x}}{y}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{y}$$$ and $$$f{\left(x \right)} = e^{x}$$$:
$${\color{red}{\int{\frac{e^{x}}{y} d x}}} = {\color{red}{\frac{\int{e^{x} d x}}{y}}}$$
The integral of the exponential function is $$$\int{e^{x} d x} = e^{x}$$$:
$$\frac{{\color{red}{\int{e^{x} d x}}}}{y} = \frac{{\color{red}{e^{x}}}}{y}$$
Therefore,
$$\int{\frac{e^{x}}{y} d x} = \frac{e^{x}}{y}$$
Add the constant of integration:
$$\int{\frac{e^{x}}{y} d x} = \frac{e^{x}}{y}+C$$
Answer
$$$\int \frac{e^{x}}{y}\, dx = \frac{e^{x}}{y} + C$$$A