$$$y^{2} - 1$$$ 的積分
您的輸入
求$$$\int \left(y^{2} - 1\right)\, dy$$$。
解答
逐項積分:
$${\color{red}{\int{\left(y^{2} - 1\right)d y}}} = {\color{red}{\left(- \int{1 d y} + \int{y^{2} d y}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dy = c y$$$:
$$\int{y^{2} d y} - {\color{red}{\int{1 d y}}} = \int{y^{2} d y} - {\color{red}{y}}$$
套用冪次法則 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$- y + {\color{red}{\int{y^{2} d y}}}=- y + {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- y + {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$
因此,
$$\int{\left(y^{2} - 1\right)d y} = \frac{y^{3}}{3} - y$$
加上積分常數:
$$\int{\left(y^{2} - 1\right)d y} = \frac{y^{3}}{3} - y+C$$
答案
$$$\int \left(y^{2} - 1\right)\, dy = \left(\frac{y^{3}}{3} - y\right) + C$$$A
Please try a new game Rotatly