Integral dari $$$y^{2} - 1$$$

Kalkulator akan menemukan integral/antiturunan dari $$$y^{2} - 1$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \left(y^{2} - 1\right)\, dy$$$.

Solusi

Integralkan suku demi suku:

$${\color{red}{\int{\left(y^{2} - 1\right)d y}}} = {\color{red}{\left(- \int{1 d y} + \int{y^{2} d y}\right)}}$$

Terapkan aturan konstanta $$$\int c\, dy = c y$$$ dengan $$$c=1$$$:

$$\int{y^{2} d y} - {\color{red}{\int{1 d y}}} = \int{y^{2} d y} - {\color{red}{y}}$$

Terapkan aturan pangkat $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:

$$- y + {\color{red}{\int{y^{2} d y}}}=- y + {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- y + {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$

Oleh karena itu,

$$\int{\left(y^{2} - 1\right)d y} = \frac{y^{3}}{3} - y$$

Tambahkan konstanta integrasi:

$$\int{\left(y^{2} - 1\right)d y} = \frac{y^{3}}{3} - y+C$$

Jawaban

$$$\int \left(y^{2} - 1\right)\, dy = \left(\frac{y^{3}}{3} - y\right) + C$$$A


Please try a new game Rotatly