Integral of $$$y^{2} - 1$$$

The calculator will find the integral/antiderivative of $$$y^{2} - 1$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(y^{2} - 1\right)\, dy$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(y^{2} - 1\right)d y}}} = {\color{red}{\left(- \int{1 d y} + \int{y^{2} d y}\right)}}$$

Apply the constant rule $$$\int c\, dy = c y$$$ with $$$c=1$$$:

$$\int{y^{2} d y} - {\color{red}{\int{1 d y}}} = \int{y^{2} d y} - {\color{red}{y}}$$

Apply the power rule $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$- y + {\color{red}{\int{y^{2} d y}}}=- y + {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- y + {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$

Therefore,

$$\int{\left(y^{2} - 1\right)d y} = \frac{y^{3}}{3} - y$$

Add the constant of integration:

$$\int{\left(y^{2} - 1\right)d y} = \frac{y^{3}}{3} - y+C$$

Answer

$$$\int \left(y^{2} - 1\right)\, dy = \left(\frac{y^{3}}{3} - y\right) + C$$$A


Please try a new game Rotatly