Integral of $$$y^{2} - 1$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(y^{2} - 1\right)\, dy$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(y^{2} - 1\right)d y}}} = {\color{red}{\left(- \int{1 d y} + \int{y^{2} d y}\right)}}$$
Apply the constant rule $$$\int c\, dy = c y$$$ with $$$c=1$$$:
$$\int{y^{2} d y} - {\color{red}{\int{1 d y}}} = \int{y^{2} d y} - {\color{red}{y}}$$
Apply the power rule $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$- y + {\color{red}{\int{y^{2} d y}}}=- y + {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- y + {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$
Therefore,
$$\int{\left(y^{2} - 1\right)d y} = \frac{y^{3}}{3} - y$$
Add the constant of integration:
$$\int{\left(y^{2} - 1\right)d y} = \frac{y^{3}}{3} - y+C$$
Answer
$$$\int \left(y^{2} - 1\right)\, dy = \left(\frac{y^{3}}{3} - y\right) + C$$$A