$$$y^{2} - 1$$$ 的积分

该计算器将求出$$$y^{2} - 1$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(y^{2} - 1\right)\, dy$$$

解答

逐项积分:

$${\color{red}{\int{\left(y^{2} - 1\right)d y}}} = {\color{red}{\left(- \int{1 d y} + \int{y^{2} d y}\right)}}$$

应用常数法则 $$$\int c\, dy = c y$$$,使用 $$$c=1$$$

$$\int{y^{2} d y} - {\color{red}{\int{1 d y}}} = \int{y^{2} d y} - {\color{red}{y}}$$

应用幂法则 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$- y + {\color{red}{\int{y^{2} d y}}}=- y + {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- y + {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$

因此,

$$\int{\left(y^{2} - 1\right)d y} = \frac{y^{3}}{3} - y$$

加上积分常数:

$$\int{\left(y^{2} - 1\right)d y} = \frac{y^{3}}{3} - y+C$$

答案

$$$\int \left(y^{2} - 1\right)\, dy = \left(\frac{y^{3}}{3} - y\right) + C$$$A


Please try a new game Rotatly