Ολοκλήρωμα του $$$y^{2} - 1$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$y^{2} - 1$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(y^{2} - 1\right)\, dy$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(y^{2} - 1\right)d y}}} = {\color{red}{\left(- \int{1 d y} + \int{y^{2} d y}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dy = c y$$$ με $$$c=1$$$:

$$\int{y^{2} d y} - {\color{red}{\int{1 d y}}} = \int{y^{2} d y} - {\color{red}{y}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:

$$- y + {\color{red}{\int{y^{2} d y}}}=- y + {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- y + {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$

Επομένως,

$$\int{\left(y^{2} - 1\right)d y} = \frac{y^{3}}{3} - y$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(y^{2} - 1\right)d y} = \frac{y^{3}}{3} - y+C$$

Απάντηση

$$$\int \left(y^{2} - 1\right)\, dy = \left(\frac{y^{3}}{3} - y\right) + C$$$A


Please try a new game Rotatly