$$$\frac{e^{y}}{x}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \frac{e^{y}}{x}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=e^{y}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x}$$$:
$${\color{red}{\int{\frac{e^{y}}{x} d x}}} = {\color{red}{e^{y} \int{\frac{1}{x} d x}}}$$
$$$\frac{1}{x}$$$ 的積分是 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$e^{y} {\color{red}{\int{\frac{1}{x} d x}}} = e^{y} {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
因此,
$$\int{\frac{e^{y}}{x} d x} = e^{y} \ln{\left(\left|{x}\right| \right)}$$
加上積分常數:
$$\int{\frac{e^{y}}{x} d x} = e^{y} \ln{\left(\left|{x}\right| \right)}+C$$
答案
$$$\int \frac{e^{y}}{x}\, dx = e^{y} \ln\left(\left|{x}\right|\right) + C$$$A
Please try a new game Rotatly