$$$x^{7 x}$$$ 的導數

此計算器將使用對數微分法求 $$$x^{7 x}$$$ 的導數,並顯示步驟。

相關計算器: 導數計算器

留空以自動偵測。
若不需要在特定點處的導數,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\frac{d}{dx} \left(x^{7 x}\right)$$$

解答

$$$H{\left(x \right)} = x^{7 x}$$$

對等式兩邊取對數:$$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{7 x}\right)$$$

利用對數的性質改寫等式右邊:$$$\ln\left(H{\left(x \right)}\right) = 7 x \ln\left(x\right)$$$

將等式兩邊分別微分:$$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(7 x \ln\left(x\right)\right)$$$

對等式左邊求導數。

函數 $$$\ln\left(H{\left(x \right)}\right)$$$ 是兩個函數 $$$f{\left(u \right)} = \ln\left(u\right)$$$$$$g{\left(x \right)} = H{\left(x \right)}$$$ 之複合 $$$f{\left(g{\left(x \right)} \right)}$$$

應用鏈式法則 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

自然對數的導數為 $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

返回原變數:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

因此,$$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$

對等式右邊求導。

套用常數倍法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$,使用 $$$c = 7$$$$$$f{\left(x \right)} = x \ln\left(x\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(7 x \ln\left(x\right)\right)\right)} = {\color{red}\left(7 \frac{d}{dx} \left(x \ln\left(x\right)\right)\right)}$$

將乘積法則 $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ 應用於 $$$f{\left(x \right)} = x$$$$$$g{\left(x \right)} = \ln\left(x\right)$$$

$$7 {\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = 7 {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

自然對數的導數為 $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$

$$7 x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + 7 \ln\left(x\right) \frac{d}{dx} \left(x\right) = 7 x {\color{red}\left(\frac{1}{x}\right)} + 7 \ln\left(x\right) \frac{d}{dx} \left(x\right)$$

套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$

$$7 \ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + 7 = 7 \ln\left(x\right) {\color{red}\left(1\right)} + 7$$

因此,$$$\frac{d}{dx} \left(7 x \ln\left(x\right)\right) = 7 \ln\left(x\right) + 7$$$

因此,$$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = 7 \ln\left(x\right) + 7$$$

因此,$$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(7 \ln\left(x\right) + 7\right) H{\left(x \right)} = 7 x^{7 x} \left(\ln\left(x\right) + 1\right)$$$

答案

$$$\frac{d}{dx} \left(x^{7 x}\right) = 7 x^{7 x} \left(\ln\left(x\right) + 1\right)$$$A


Please try a new game Rotatly