Afgeleide van $$$x^{7 x}$$$
Gerelateerde rekenmachine: Afgeleide rekenmachine
Uw invoer
Bepaal $$$\frac{d}{dx} \left(x^{7 x}\right)$$$.
Oplossing
Zij $$$H{\left(x \right)} = x^{7 x}$$$.
Neem de logaritme van beide zijden: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{7 x}\right)$$$.
Herschrijf het rechterlid met behulp van de eigenschappen van logaritmen: $$$\ln\left(H{\left(x \right)}\right) = 7 x \ln\left(x\right)$$$.
Differentieer afzonderlijk beide zijden van de vergelijking: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(7 x \ln\left(x\right)\right)$$$.
Differentieer het linkerlid van de vergelijking.
De functie $$$\ln\left(H{\left(x \right)}\right)$$$ is de samenstelling $$$f{\left(g{\left(x \right)} \right)}$$$ van twee functies $$$f{\left(u \right)} = \ln\left(u\right)$$$ en $$$g{\left(x \right)} = H{\left(x \right)}$$$.
Pas de kettingregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$De afgeleide van de natuurlijke logaritme is $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$Keer terug naar de oorspronkelijke variabele:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$Dus, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.
Differentieer het rechterlid van de vergelijking.
Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = 7$$$ en $$$f{\left(x \right)} = x \ln\left(x\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(7 x \ln\left(x\right)\right)\right)} = {\color{red}\left(7 \frac{d}{dx} \left(x \ln\left(x\right)\right)\right)}$$Pas de productregel $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe op $$$f{\left(x \right)} = x$$$ en $$$g{\left(x \right)} = \ln\left(x\right)$$$:
$$7 {\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = 7 {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$De afgeleide van de natuurlijke logaritme is $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$7 x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + 7 \ln\left(x\right) \frac{d}{dx} \left(x\right) = 7 x {\color{red}\left(\frac{1}{x}\right)} + 7 \ln\left(x\right) \frac{d}{dx} \left(x\right)$$Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$7 \ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + 7 = 7 \ln\left(x\right) {\color{red}\left(1\right)} + 7$$Dus, $$$\frac{d}{dx} \left(7 x \ln\left(x\right)\right) = 7 \ln\left(x\right) + 7$$$.
Dus, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = 7 \ln\left(x\right) + 7$$$.
Daarom geldt $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(7 \ln\left(x\right) + 7\right) H{\left(x \right)} = 7 x^{7 x} \left(\ln\left(x\right) + 1\right)$$$.
Antwoord
$$$\frac{d}{dx} \left(x^{7 x}\right) = 7 x^{7 x} \left(\ln\left(x\right) + 1\right)$$$A