Turunan dari $$$x^{7 x}$$$

Kalkulator akan mencari turunan dari $$$x^{7 x}$$$ menggunakan diferensiasi logaritmik, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Turunan

Biarkan kosong untuk deteksi otomatis.
Biarkan kosong jika Anda tidak memerlukan turunan pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\frac{d}{dx} \left(x^{7 x}\right)$$$.

Solusi

Misalkan $$$H{\left(x \right)} = x^{7 x}$$$.

Ambil logaritma pada kedua ruas: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{7 x}\right)$$$

Tulis ulang ruas kanan menggunakan sifat-sifat logaritma: $$$\ln\left(H{\left(x \right)}\right) = 7 x \ln\left(x\right)$$$.

Diferensiasikan secara terpisah kedua sisi persamaan: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(7 x \ln\left(x\right)\right)$$$.

Turunkan ruas kiri dari persamaan.

Fungsi $$$\ln\left(H{\left(x \right)}\right)$$$ merupakan komposisi $$$f{\left(g{\left(x \right)} \right)}$$$ dari dua fungsi $$$f{\left(u \right)} = \ln\left(u\right)$$$ dan $$$g{\left(x \right)} = H{\left(x \right)}$$$.

Terapkan aturan rantai $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

Turunan dari logaritma natural adalah $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

Kembalikan ke variabel semula:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

Dengan demikian, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.

Turunkan ruas kanan persamaan.

Terapkan aturan kelipatan konstanta $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ dengan $$$c = 7$$$ dan $$$f{\left(x \right)} = x \ln\left(x\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(7 x \ln\left(x\right)\right)\right)} = {\color{red}\left(7 \frac{d}{dx} \left(x \ln\left(x\right)\right)\right)}$$

Terapkan aturan hasil kali $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ pada $$$f{\left(x \right)} = x$$$ dan $$$g{\left(x \right)} = \ln\left(x\right)$$$:

$$7 {\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = 7 {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

Turunan dari logaritma natural adalah $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$7 x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + 7 \ln\left(x\right) \frac{d}{dx} \left(x\right) = 7 x {\color{red}\left(\frac{1}{x}\right)} + 7 \ln\left(x\right) \frac{d}{dx} \left(x\right)$$

Terapkan aturan pangkat $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ dengan $$$n = 1$$$, dengan kata lain, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$7 \ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + 7 = 7 \ln\left(x\right) {\color{red}\left(1\right)} + 7$$

Dengan demikian, $$$\frac{d}{dx} \left(7 x \ln\left(x\right)\right) = 7 \ln\left(x\right) + 7$$$.

Dengan demikian, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = 7 \ln\left(x\right) + 7$$$.

Oleh karena itu, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(7 \ln\left(x\right) + 7\right) H{\left(x \right)} = 7 x^{7 x} \left(\ln\left(x\right) + 1\right)$$$.

Jawaban

$$$\frac{d}{dx} \left(x^{7 x}\right) = 7 x^{7 x} \left(\ln\left(x\right) + 1\right)$$$A


Please try a new game Rotatly