Derivata di $$$x^{7 x}$$$

Il calcolatore calcolerà la derivata di $$$x^{7 x}$$$ utilizzando la derivazione logaritmica, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di derivate

Lascia vuoto per il rilevamento automatico.
Lascia vuoto se non ti serve la derivata in un punto specifico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\frac{d}{dx} \left(x^{7 x}\right)$$$.

Soluzione

Sia $$$H{\left(x \right)} = x^{7 x}$$$.

Prendi il logaritmo di entrambi i membri: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{7 x}\right)$$$.

Riscrivi il membro di destra usando le proprietà dei logaritmi: $$$\ln\left(H{\left(x \right)}\right) = 7 x \ln\left(x\right)$$$.

Deriva separatamente entrambi i membri dell'equazione: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(7 x \ln\left(x\right)\right)$$$.

Deriva il membro sinistro dell’equazione.

La funzione $$$\ln\left(H{\left(x \right)}\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = H{\left(x \right)}$$$.

Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

Torna alla variabile originale:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

Quindi, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.

Deriva il membro destro dell’equazione.

Applica la regola del multiplo costante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 7$$$ e $$$f{\left(x \right)} = x \ln\left(x\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(7 x \ln\left(x\right)\right)\right)} = {\color{red}\left(7 \frac{d}{dx} \left(x \ln\left(x\right)\right)\right)}$$

Applica la regola del prodotto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ a $$$f{\left(x \right)} = x$$$ e $$$g{\left(x \right)} = \ln\left(x\right)$$$:

$$7 {\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = 7 {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

La derivata del logaritmo naturale è $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$7 x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + 7 \ln\left(x\right) \frac{d}{dx} \left(x\right) = 7 x {\color{red}\left(\frac{1}{x}\right)} + 7 \ln\left(x\right) \frac{d}{dx} \left(x\right)$$

Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$7 \ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + 7 = 7 \ln\left(x\right) {\color{red}\left(1\right)} + 7$$

Quindi, $$$\frac{d}{dx} \left(7 x \ln\left(x\right)\right) = 7 \ln\left(x\right) + 7$$$.

Pertanto, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = 7 \ln\left(x\right) + 7$$$.

Pertanto, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(7 \ln\left(x\right) + 7\right) H{\left(x \right)} = 7 x^{7 x} \left(\ln\left(x\right) + 1\right)$$$.

Risposta

$$$\frac{d}{dx} \left(x^{7 x}\right) = 7 x^{7 x} \left(\ln\left(x\right) + 1\right)$$$A


Please try a new game Rotatly