$$$\sqrt{u}$$$ 的积分

该计算器将求出$$$\sqrt{u}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \sqrt{u}\, du$$$

解答

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=\frac{1}{2}$$$

$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$

因此,

$$\int{\sqrt{u} d u} = \frac{2 u^{\frac{3}{2}}}{3}$$

加上积分常数:

$$\int{\sqrt{u} d u} = \frac{2 u^{\frac{3}{2}}}{3}+C$$

答案

$$$\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3} + C$$$A


Please try a new game Rotatly