$$$e^{- 2 x} \sin{\left(e^{- x} \right)}$$$ 的积分
您的输入
求$$$\int e^{- 2 x} \sin{\left(e^{- x} \right)}\, dx$$$。
解答
设$$$u=e^{- x}$$$。
则$$$du=\left(e^{- x}\right)^{\prime }dx = - e^{- x} dx$$$ (步骤见»),并有$$$e^{- x} dx = - du$$$。
该积分可以改写为
$${\color{red}{\int{e^{- 2 x} \sin{\left(e^{- x} \right)} d x}}} = {\color{red}{\int{\left(- u \sin{\left(u \right)}\right)d u}}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = u \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\left(- u \sin{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{u \sin{\left(u \right)} d u}\right)}}$$
对于积分$$$\int{u \sin{\left(u \right)} d u}$$$,使用分部积分法$$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$。
设 $$$\operatorname{c}=u$$$ 和 $$$\operatorname{dv}=\sin{\left(u \right)} du$$$。
则 $$$\operatorname{dc}=\left(u\right)^{\prime }du=1 du$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\sin{\left(u \right)} d u}=- \cos{\left(u \right)}$$$ (步骤见 »)。
所以,
$$- {\color{red}{\int{u \sin{\left(u \right)} d u}}}=- {\color{red}{\left(u \cdot \left(- \cos{\left(u \right)}\right)-\int{\left(- \cos{\left(u \right)}\right) \cdot 1 d u}\right)}}=- {\color{red}{\left(- u \cos{\left(u \right)} - \int{\left(- \cos{\left(u \right)}\right)d u}\right)}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$u \cos{\left(u \right)} + {\color{red}{\int{\left(- \cos{\left(u \right)}\right)d u}}} = u \cos{\left(u \right)} + {\color{red}{\left(- \int{\cos{\left(u \right)} d u}\right)}}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$u \cos{\left(u \right)} - {\color{red}{\int{\cos{\left(u \right)} d u}}} = u \cos{\left(u \right)} - {\color{red}{\sin{\left(u \right)}}}$$
回忆一下 $$$u=e^{- x}$$$:
$$- \sin{\left({\color{red}{u}} \right)} + {\color{red}{u}} \cos{\left({\color{red}{u}} \right)} = - \sin{\left({\color{red}{e^{- x}}} \right)} + {\color{red}{e^{- x}}} \cos{\left({\color{red}{e^{- x}}} \right)}$$
因此,
$$\int{e^{- 2 x} \sin{\left(e^{- x} \right)} d x} = - \sin{\left(e^{- x} \right)} + e^{- x} \cos{\left(e^{- x} \right)}$$
加上积分常数:
$$\int{e^{- 2 x} \sin{\left(e^{- x} \right)} d x} = - \sin{\left(e^{- x} \right)} + e^{- x} \cos{\left(e^{- x} \right)}+C$$
答案
$$$\int e^{- 2 x} \sin{\left(e^{- x} \right)}\, dx = \left(- \sin{\left(e^{- x} \right)} + e^{- x} \cos{\left(e^{- x} \right)}\right) + C$$$A