Ολοκλήρωμα του $$$e^{- 2 x} \sin{\left(e^{- x} \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$e^{- 2 x} \sin{\left(e^{- x} \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int e^{- 2 x} \sin{\left(e^{- x} \right)}\, dx$$$.

Λύση

Έστω $$$u=e^{- x}$$$.

Τότε $$$du=\left(e^{- x}\right)^{\prime }dx = - e^{- x} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$e^{- x} dx = - du$$$.

Επομένως,

$${\color{red}{\int{e^{- 2 x} \sin{\left(e^{- x} \right)} d x}}} = {\color{red}{\int{\left(- u \sin{\left(u \right)}\right)d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-1$$$ και $$$f{\left(u \right)} = u \sin{\left(u \right)}$$$:

$${\color{red}{\int{\left(- u \sin{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{u \sin{\left(u \right)} d u}\right)}}$$

Για το ολοκλήρωμα $$$\int{u \sin{\left(u \right)} d u}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$.

Έστω $$$\operatorname{c}=u$$$ και $$$\operatorname{dv}=\sin{\left(u \right)} du$$$.

Τότε $$$\operatorname{dc}=\left(u\right)^{\prime }du=1 du$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{\sin{\left(u \right)} d u}=- \cos{\left(u \right)}$$$ (τα βήματα φαίνονται »).

Επομένως,

$$- {\color{red}{\int{u \sin{\left(u \right)} d u}}}=- {\color{red}{\left(u \cdot \left(- \cos{\left(u \right)}\right)-\int{\left(- \cos{\left(u \right)}\right) \cdot 1 d u}\right)}}=- {\color{red}{\left(- u \cos{\left(u \right)} - \int{\left(- \cos{\left(u \right)}\right)d u}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-1$$$ και $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$u \cos{\left(u \right)} + {\color{red}{\int{\left(- \cos{\left(u \right)}\right)d u}}} = u \cos{\left(u \right)} + {\color{red}{\left(- \int{\cos{\left(u \right)} d u}\right)}}$$

Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$u \cos{\left(u \right)} - {\color{red}{\int{\cos{\left(u \right)} d u}}} = u \cos{\left(u \right)} - {\color{red}{\sin{\left(u \right)}}}$$

Θυμηθείτε ότι $$$u=e^{- x}$$$:

$$- \sin{\left({\color{red}{u}} \right)} + {\color{red}{u}} \cos{\left({\color{red}{u}} \right)} = - \sin{\left({\color{red}{e^{- x}}} \right)} + {\color{red}{e^{- x}}} \cos{\left({\color{red}{e^{- x}}} \right)}$$

Επομένως,

$$\int{e^{- 2 x} \sin{\left(e^{- x} \right)} d x} = - \sin{\left(e^{- x} \right)} + e^{- x} \cos{\left(e^{- x} \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{e^{- 2 x} \sin{\left(e^{- x} \right)} d x} = - \sin{\left(e^{- x} \right)} + e^{- x} \cos{\left(e^{- x} \right)}+C$$

Απάντηση

$$$\int e^{- 2 x} \sin{\left(e^{- x} \right)}\, dx = \left(- \sin{\left(e^{- x} \right)} + e^{- x} \cos{\left(e^{- x} \right)}\right) + C$$$A


Please try a new game Rotatly