$$$\frac{1}{\sqrt{1 - 4 x^{2}}}$$$ 的积分
您的输入
求$$$\int \frac{1}{\sqrt{1 - 4 x^{2}}}\, dx$$$。
解答
设$$$x=\frac{\sin{\left(u \right)}}{2}$$$。
则$$$dx=\left(\frac{\sin{\left(u \right)}}{2}\right)^{\prime }du = \frac{\cos{\left(u \right)}}{2} du$$$(步骤见»)。
此外,可得$$$u=\operatorname{asin}{\left(2 x \right)}$$$。
因此,
$$$\frac{1}{\sqrt{1 - 4 x^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}}}$$$
利用恒等式 $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}}}$$$
假设$$$\cos{\left( u \right)} \ge 0$$$,我们得到如下结果:
$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{\cos{\left( u \right)}}$$$
因此,
$${\color{red}{\int{\frac{1}{\sqrt{1 - 4 x^{2}}} d x}}} = {\color{red}{\int{\frac{1}{2} d u}}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=\frac{1}{2}$$$:
$${\color{red}{\int{\frac{1}{2} d u}}} = {\color{red}{\left(\frac{u}{2}\right)}}$$
回忆一下 $$$u=\operatorname{asin}{\left(2 x \right)}$$$:
$$\frac{{\color{red}{u}}}{2} = \frac{{\color{red}{\operatorname{asin}{\left(2 x \right)}}}}{2}$$
因此,
$$\int{\frac{1}{\sqrt{1 - 4 x^{2}}} d x} = \frac{\operatorname{asin}{\left(2 x \right)}}{2}$$
加上积分常数:
$$\int{\frac{1}{\sqrt{1 - 4 x^{2}}} d x} = \frac{\operatorname{asin}{\left(2 x \right)}}{2}+C$$
答案
$$$\int \frac{1}{\sqrt{1 - 4 x^{2}}}\, dx = \frac{\operatorname{asin}{\left(2 x \right)}}{2} + C$$$A