Integral dari $$$\frac{1}{\sqrt{1 - 4 x^{2}}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{\sqrt{1 - 4 x^{2}}}\, dx$$$.
Solusi
Misalkan $$$x=\frac{\sin{\left(u \right)}}{2}$$$.
Maka $$$dx=\left(\frac{\sin{\left(u \right)}}{2}\right)^{\prime }du = \frac{\cos{\left(u \right)}}{2} du$$$ (langkah-langkah dapat dilihat »).
Selain itu, berlaku $$$u=\operatorname{asin}{\left(2 x \right)}$$$.
Integran menjadi
$$$\frac{1}{\sqrt{1 - 4 x^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}}}$$$
Gunakan identitas $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}}}$$$
Dengan asumsi bahwa $$$\cos{\left( u \right)} \ge 0$$$, diperoleh sebagai berikut:
$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{\cos{\left( u \right)}}$$$
Integral menjadi
$${\color{red}{\int{\frac{1}{\sqrt{1 - 4 x^{2}}} d x}}} = {\color{red}{\int{\frac{1}{2} d u}}}$$
Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=\frac{1}{2}$$$:
$${\color{red}{\int{\frac{1}{2} d u}}} = {\color{red}{\left(\frac{u}{2}\right)}}$$
Ingat bahwa $$$u=\operatorname{asin}{\left(2 x \right)}$$$:
$$\frac{{\color{red}{u}}}{2} = \frac{{\color{red}{\operatorname{asin}{\left(2 x \right)}}}}{2}$$
Oleh karena itu,
$$\int{\frac{1}{\sqrt{1 - 4 x^{2}}} d x} = \frac{\operatorname{asin}{\left(2 x \right)}}{2}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{\sqrt{1 - 4 x^{2}}} d x} = \frac{\operatorname{asin}{\left(2 x \right)}}{2}+C$$
Jawaban
$$$\int \frac{1}{\sqrt{1 - 4 x^{2}}}\, dx = \frac{\operatorname{asin}{\left(2 x \right)}}{2} + C$$$A