Integral of $$$\frac{1}{\sqrt{1 - 4 x^{2}}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{\sqrt{1 - 4 x^{2}}}\, dx$$$.
Solution
Let $$$x=\frac{\sin{\left(u \right)}}{2}$$$.
Then $$$dx=\left(\frac{\sin{\left(u \right)}}{2}\right)^{\prime }du = \frac{\cos{\left(u \right)}}{2} du$$$ (steps can be seen »).
Also, it follows that $$$u=\operatorname{asin}{\left(2 x \right)}$$$.
Therefore,
$$$\frac{1}{\sqrt{1 - 4 x^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}}}$$$
Use the identity $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{\sqrt{\cos^{2}{\left( u \right)}}}$$$
Assuming that $$$\cos{\left( u \right)} \ge 0$$$, we obtain the following:
$$$\frac{1}{\sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{\cos{\left( u \right)}}$$$
Thus,
$${\color{red}{\int{\frac{1}{\sqrt{1 - 4 x^{2}}} d x}}} = {\color{red}{\int{\frac{1}{2} d u}}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=\frac{1}{2}$$$:
$${\color{red}{\int{\frac{1}{2} d u}}} = {\color{red}{\left(\frac{u}{2}\right)}}$$
Recall that $$$u=\operatorname{asin}{\left(2 x \right)}$$$:
$$\frac{{\color{red}{u}}}{2} = \frac{{\color{red}{\operatorname{asin}{\left(2 x \right)}}}}{2}$$
Therefore,
$$\int{\frac{1}{\sqrt{1 - 4 x^{2}}} d x} = \frac{\operatorname{asin}{\left(2 x \right)}}{2}$$
Add the constant of integration:
$$\int{\frac{1}{\sqrt{1 - 4 x^{2}}} d x} = \frac{\operatorname{asin}{\left(2 x \right)}}{2}+C$$
Answer
$$$\int \frac{1}{\sqrt{1 - 4 x^{2}}}\, dx = \frac{\operatorname{asin}{\left(2 x \right)}}{2} + C$$$A