$$$y$$$ 的二阶导数
您的输入
求$$$\frac{d^{2}}{dy^{2}} \left(y\right)$$$。
解答
求一阶导数 $$$\frac{d}{dy} \left(y\right)$$$
应用幂法则 $$$\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dy} \left(y\right) = 1$$$:
$${\color{red}\left(\frac{d}{dy} \left(y\right)\right)} = {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dy} \left(y\right) = 1$$$。
接下来,$$$\frac{d^{2}}{dy^{2}} \left(y\right) = \frac{d}{dy} \left(1\right)$$$
常数的导数是$$$0$$$:
$${\color{red}\left(\frac{d}{dy} \left(1\right)\right)} = {\color{red}\left(0\right)}$$因此,$$$\frac{d}{dy} \left(1\right) = 0$$$。
因此,$$$\frac{d^{2}}{dy^{2}} \left(y\right) = 0$$$。
答案
$$$\frac{d^{2}}{dy^{2}} \left(y\right) = 0$$$A
Please try a new game Rotatly