$$$\left[\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right]$$$'nin determinantı
İlgili hesap makinesi: Kofaktör Matrisi Hesaplayıcı
Girdiniz
Hesaplayın $$$\left|\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right|$$$.
Çözüm
1x1 bir matrisin determinantı $$$\left|\begin{array}{c}a\end{array}\right| = a$$$.
$$$\left|\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right| = - a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda$$$
Cevap
$$$\left|\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right| = - a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda$$$A